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PHYSICS IN ACTION

Some marine mammals, such as dolphins,

use sound waves to locate distant objects.

In this process, called echolocation, a dolphin

produces a rapid train of short sound 

pulses that travel through the water, bounce

off distant objects, and reflect back to the

dolphin. From these echoes, dolphins can

determine the size, shape, speed, and dis-

tance of their potential prey.

A dolphin’s echolocation is extremely

sophisticated. Experiments have shown that

at a distance of 1 14 m, a blindfolded dolphin

can locate a stainless-steel sphere with a

diameter of 7.5 cm and can distinguish

between a sheet of aluminum and a sheet of

copper. In this chapter you will study sound

waves and see how dolphins echolocate.

• How does dolphin echolocation work?

• How does a dolphin determine the direction
a fish is moving?

CONCEPT REVIEW

Longitudinal waves (Section 12-3)

Wave speed (Section 12-3)

Standing waves (Section 12-4)

CHAPTER 13

Sound

Sound 479
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THE PRODUCTION OF SOUND WAVES

Whether a sound wave conveys the shrill whine of a jet engine or the melodic

whistling of a bird, it begins with a vibrating object. We will explore how

sound waves are produced by considering a vibrating tuning fork, as shown in

Figure 13-1(a).
The vibrating prong of a tuning fork, shown in Figure 13-1(b), sets the air

molecules near it in motion. As the prong swings to the right, as shown in Fig-
ure 13-1(c), the air molecules in front of the movement are forced closer

together. (This situation is exaggerated in the figure for clarity.) Such a region

of high molecular density and high air pressure is called a compression. As

the prong moves to the left, as in Figure 13-1(d), the molecules to the right

spread apart, and the density and air pressure in this region become lower than

normal. This region of lower density and pressure is called a rarefaction.
As the tuning fork continues to vibrate, a series of compressions and rar-

efactions form and spread away from each prong. These compressions and

rarefactions expand and spread out in all directions, like ripple waves on a

pond. When the tuning fork vibrates with simple harmonic motion, the air

molecules also vibrate back and forth with simple harmonic motion.

13-1
Sound waves

13-1 SECTION OBJECTIVES

• Explain how sound waves are
produced.

• Relate frequency to pitch.

• Compare the speed of sound
in various media.

• Relate plane waves to spheri-
cal waves.

• Recognize the Doppler
effect, and determine the
direction of a frequency shift
when there is relative motion
between a source and an
observer.

Figure 13-1
(a) The sound from a tuning fork is
produced by (b) the vibrations of
each of its prongs. (c) When a
prong swings to the right, there is a
region of high density and pressure.
(d) When the prong swings back to
the left, a region of lower density
and pressure exists.

Compression

Rarefaction

99 C 3 00 00 a,b

(b)

(c)

(d)

compression

the region of a longitudinal wave
in which the density and pres-
sure are greater than normal

rarefaction

the region of a longitudinal wave
in which the density and pres-
sure are less than normal

(a)
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Elephants use infrasonic sound
waves to communicate with one
another. Their large ears enable
them to detect these low-frequency
sound waves, which have relatively
long wavelengths. Elephants can
effectively communicate in this way,
even when they are separated by
many kilometers.

pitch

the perceived highness or low-
ness of a sound, depending on
the frequency of the sound waves

Figure 13-2
(a) As this tuning fork vibrates, (b) a
series of compressions and rarefac-
tions move away from each prong.
(c)The crests of this sine wave cor-
respond to compressions, and the
troughs correspond to rarefactions.

Sound waves are longitudinal

In sound waves, the vibrations of air molecules are parallel to the direction of

wave motion. Thus, sound waves are longitudinal. As you saw in Chapter 12, a

longitudinal wave produced by a vibrating object can be represented by a sine

curve. In Figure 13-2 the crests of the sine curve correspond to compressions in

the sound wave, and the troughs correspond to rarefactions. Because compres-

sions are regions of higher pressure and rarefactions are regions of lower pres-

sure, the sine curve represents the changes in air pressure due to the propagation

of the sound waves.

CHARACTERISTICS OF SOUND WAVES

In Chapter 12, frequency was defined as the number of cycles per unit of time.

Sound waves that the average human ear can hear, called audible sound waves,

have frequencies between 20 and 20 000 Hz. (An individual’s hearing depends

on a variety of factors, including age and experiences with loud noises.)

Sound waves with frequencies less than 20 Hz are called infrasonic waves, and

those above 20 000 Hz are called ultrasonic waves.

It may seem confusing to use the term sound waves for infrasonic or ultra-

sonic waves since humans cannot hear these sounds, but ultrasonic and infra-

sonic waves consist of the same types of vibrations as the sounds that we can

hear. The range of sound waves that are considered to be audible depends on

the ability of the average human ear to detect their vibrations. Dogs can hear

ultrasonic waves that humans cannot.

Frequency determines pitch

The frequency of an audible sound wave determines how high or low we per-

ceive the sound to be, which is known as pitch. As the frequency of a sound

wave increases, the pitch rises. The frequency of a wave is an objective quan-

tity that can be measured, while pitch refers to how different frequencies are

perceived by the human ear.

(a) (b)

(c)

TOPIC: Sound
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Ultrasonic waves can produce images

As discussed in Chapter 12, wavelength decreases as frequency increases.

Thus, infrasonic waves have longer wavelengths than audible sound waves,

and ultrasonic waves have shorter wavelengths. Because of their short wave-

lengths, ultrasonic waves have widespread medical applications.

For example, ultrasonic waves can be used to produce images of objects inside

the body. Such imaging is possible because sound waves are partially reflected when

they reach a boundary between two materials of different densities. The images pro-

duced by ultrasonic waves are clearer and more detailed than those that could be

produced by lower-frequency sound waves because the short wavelengths of ultra-

sonic waves are easily reflected off small objects.Audible and infrasonic sound waves

are not as effective because their longer wavelengths pass around small objects.

In order for ultrasonic waves to “see” an object inside the body, the wavelength

of the waves used must be about the same size or smaller than the object. A typical

frequency used in an ultrasonic device is about 10 Mhz. The speed of an ultra-

sonic wave in human tissue is about 1500 m/s, so the wavelength of 10 Mhz waves

is l = v/f = 1.5 mm. This device will not detect objects smaller than this size.

Physicians commonly use ultrasonic waves to observe fetuses. In this

process, a crystal emits ultrasonic pulses. The same crystal acts as a receiver

and detects the reflected sound waves. These reflected sound waves are con-

verted to an electric signal, which forms an image on a fluorescent screen, as

in Figure 13-3. By repeating this process for different portions of the mother’s

abdomen, a physician can obtain a complete picture of the fetus. Figure 13-3
shows the ultrasound image of a fetus in the womb after 21 weeks of develop-

ment. In this profile view, the head is at the upper right of the image, and an

outline of the spine and upper arm can also be seen. At this stage, the nose,

lips, and chin are fully developed, and the fetus weighs about 500 g. These

images allow doctors to detect some types of fetal abnormalities.

Dolphin echolocation works in a similar manner. A dolphin sends out puls-

es of sound, which return in the form of reflected sound waves. These reflected

waves allow the dolphin to form an image of the object that reflected the waves.

Dolphins use high-frequency waves for echolocation because shorter wave-

lengths are most effective for detecting smaller objects.

Speed of sound depends on the medium

Sound waves can travel through solids, liquids, and gases. Because waves con-

sist of particle vibrations, the speed of a wave depends on how quickly one

particle can transfer its motion to another particle. For example, solid parti-

cles respond more rapidly to a disturbance than gas particles do because the

molecules of a solid are closer together than those of a gas are. As a result,

sound waves generally travel faster through solids than through gases. Table
13-1 shows the speed of sound waves in various media.

The speed of sound also depends on the temperature of the medium. As

temperature rises, the particles of a gas collide more frequently. Thus, in a gas,

Figure 13-3
Ultrasound images, such as this 
one, are formed with reflected
sound waves. This colorized image
depicts a fetus after 2 1 weeks of
development.

Table 13-1 Speed of
sound in various media

Medium v (m/s)

Gases
air (0°C) 33 1
air (25°C) 346
air (100°C) 366
helium (0°C) 972
hydrogen (0°C) 1290
oxygen (0°C) 317

Liquids at 25°C
methyl alcohol 1 140
sea water 1530
water 1490

Solids
aluminum 5 100
copper 3560
iron 5 130
lead 1320
vulcanized rubber 54
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Figure 13-4
In this representation of a spherical
wave, the wave fronts represent
compressions and the rays show
the direction of wave motion. Each
wave front corresponds to a crest
of the sine curve, which in turn cor-
responds to a single ray.

Rays

Wave fronts

Figure 13-5
Spherical wave fronts that are a
great distance from the source can
be approximated with parallel
planes known as plane waves.

2. Lightning and thunder Light waves 
travel nearly 1 million times faster than sound 
waves in air. With this in mind, explain 
how the distance to a lightning bolt 
can be determined by counting 
the seconds between the 
flash and the sound of 
the thunder.

1. Hydrogen and air Hydrogen atoms have a
smaller mass than the primary components of air, so
they are accelerated much more easily. How does this
fact account for the great difference in the speed of
sound waves traveling through air and hydrogen, as
shown in Table 13-1 on page 482?

the disturbance can spread faster at higher temperatures than at lower 

temperatures. In liquids and solids, the particles are close enough together

that the difference due to temperature changes is less noticeable.

Sound waves propagate in three dimensions

In Chapter 12, waves were shown as traveling in a single direction. But sound

waves actually travel away from a vibrating source in all three dimensions. When

a musician plays a saxophone in the middle of a room, the resulting sound can be

heard throughout the room because the sound waves spread out in all directions.

Such three-dimensional sound waves are approximately spherical. To simplify,

we shall assume that sound waves are exactly spherical unless stated otherwise.

Spherical waves can be represented graphically in two dimensions with a

series of circles surrounding the source, as shown in Figure 13-4. The circles

represent the centers of compressions, called wave fronts. Because we are con-

sidering a three-dimensional phenomenon in two dimensions, each circle

represents a spherical area.

Because each wave front corresponds to the center of a compression, the

distance between adjacent wave fronts is equal to one wavelength, l. The ra-

dial lines perpendicular to the wave fronts are called rays. Rays indicate the

direction of the wave motion. The sine curve used in our previous representa-

tion of sound waves, also shown in Figure 13-4, corresponds to a single ray.

Because crests of the sine curve represent compressions, each wave front

crossed by this ray corresponds to a crest of the sine curve.

Now consider a small portion of a spherical wave front that is many wave-

lengths away from the source, as shown in Figure 13-5. In this case, the rays are

nearly parallel lines, and the wave fronts are nearly parallel planes. Thus, at dis-

tances from the source that are great relative to the wavelength, we can approxi-

mate spherical wave fronts with parallel planes. Such waves are called plane

waves. Any small portion of a spherical wave that is far from the source can be

considered a plane wave. Plane waves can be treated as a series of identical one-

dimensional waves, like those in Chapter 12, all traveling in the same direction.
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When we drive over a bridge, we usually take

its structural integrity for granted. Unfortu-

nately, drivers should not always make that

assumption. Many of the almost 600 000

bridges in the United States were built over 

80 years ago, and most of the rest are 35 to 40

years old. As a bridge ages, cracks form in the

steel that can weaken the bridge or even lead to

eventual collapse. Inspectors search for those

cracks visually, but that method is generally

unreliable. David Prine, a senior research sci-

entist at Northwestern University, thinks that

the most reliable way to find damage in bridges

is to listen to them.

“When a piece of steel cracks, high-frequency

sound is emitted,” explained Prine. These noises

often sound like banging noises that echo

throughout the bridge.

Prine has developed a way to inspect bridges

using a system of acoustic-emissions sensors—

sensitive microphones attached to the steel in a

bridge—to capture audio signals from the

structure. The signals are put into a computer,

which filters out traffic and other noise and

searches for sounds around 150 kHz, the fre-

quency range of cracking steel. The computer

locates where on the bridge each sound is com-

ing from and then determines whether the

recorded sounds match the pattern of a

spreading crack. Damage can then be tracked

down and repaired.

The device works best as a preventive mea-

sure. “The name of the game is to determine

what the problems are at the earliest possible

stage so you can do a minimal level of repair

and not wait until it gets too bad,” Prine said.

Still, the acoustic-emissions sensor comes

in handy even after a bridge has been fixed.

The sensor can monitor different repair meth-

ods after they have been tried to determine

which methods best correct the problem. This

is a much more efficient means of checking

repairs than the old way—waiting until the

bridge falls apart.

Acoustic Bridge Inspection
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THE DOPPLER EFFECT

If you stand on the street while someone drives by honking a car horn, you will

notice the pitch of the horn change. The pitch will be higher as the car

approaches and will be lower as the car moves away. As you read earlier in this

section, the pitch of a sound depends on its frequency. But in this case, the car

horn is not changing its frequency. How can we account for this change in pitch?

Figure 13-6
As this car moves to the left, an
observer in front of the car, at point
A, hears the car horn at a higher
pitch than the driver, while an
observer behind the car, at point B,
hears a lower pitch.

The Doppler effect occurs with all
types of waves. In the radar systems
used by police to monitor car
speeds, a computer compares the
frequency of radar waves emitted
with those reflected from a moving
car and then uses this comparison
to calculate the speed of the car.

Sound 485

A B

Doppler effect

a frequency shift that is the result
of relative motion between the
source of waves and an observer

Relative motion creates a change in frequency

In our earlier examples, we assumed that both the source of the sound waves

and the listener were stationary. If a horn is honked in a parked car, an observ-

er standing on the street hears the same pitch that the driver hears, as you

would expect. For simplicity’s sake, we will assume that the sound waves pro-

duced by the car horn are spherical.

When the car shown in Figure 13-6 is moving, there is relative motion

between the moving car and a stationary observer. This relative motion affects

the way the wave fronts of the sound waves produced by the car’s horn are

perceived by an observer.

Although the frequency of the car horn (the source frequency) remains

constant, the wave fronts reach an observer in front of the car, at point A,

more often than they would if the car were stationary. This is because the

source of the sound waves is moving toward the observer. Thus, the fre-

quency heard by this observer is greater than the source frequency. (Note that

the speed of the sound waves does not change.) For the same reason, the wave

fronts reach an observer behind the car, at point B, less often than they would

if the car were stationary. As a result, the frequency heard by this observer is

less than the source frequency. This frequency shift is known as the Doppler
effect, named for the Austrian physicist Christian Doppler (1803–1853), who

first described it.

TOPIC: Doppler effect
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Because frequency determines pitch, the Doppler effect affects the pitch

heard by each listener on the street. The observer in front of the car hears a

higher pitch, while the observer behind the car hears a lower pitch.

We have considered a moving source with respect to a stationary observer,

but the Doppler effect also occurs when the observer is moving with respect to

a stationary source or when both are moving at different speeds. In other

words, the Doppler effect occurs whenever there is relative motion between

the source of waves and an observer. Although the Doppler effect is most

commonly experienced with sound waves, it is a phenomenon common to all

waves, including electromagnetic waves, such as visible light.

Section Review

1. If you hear a higher pitch from a trumpet than from a saxophone, how

do the frequencies of the sound waves from the trumpet compare with 

those from the saxophone?

2. Could a small portion of the innermost

wave front shown in Figure 13-7 be

approximated by a plane wave? Why or

why not?

3. Figure 13-8 is a diagram of the Doppler

effect in a ripple tank. In which direction

is the source of these ripple waves 

moving?

4. If the source of the waves in Figure 13-8
is stationary, which way must the ripple

tank be moving?

5. Physics in Action Dolphins can produce sound waves with fre-

quencies ranging from 0.25 kHz to 220 kHz, but only those at the upper

end of this spectrum are used in echolocation. Explain why high-

frequency waves work better than low-frequency waves.

6. Physics in Action Sound pulses emitted by a dolphin travel

through 20°C ocean water at a rate of 1450 m/s. In 20°C air, these pulses

would travel 342.9 m/s. How can you account for this difference in speed?

7. Physics in Action As a dolphin swims toward a fish, it sends out

sound waves to determine the direction the fish is moving. If the fre-

quency of the reflected waves is increased, is the dolphin catching up to

the fish or falling behind?

Figure 13-7

Figure 13-8

IN
TERACTIV

E
•

T U T O R
PHYSICSPHYSICS

Module 13
“Doppler Effect”
provides an interactive lesson
with guided problem-solving
practice to teach you more
about the Doppler effect.
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SOUND INTENSITY

When a piano player strikes a piano key, a hammer inside the piano strikes a

wire and causes it to vibrate, as shown in Figure 13-9. The wire’s vibrations

are then transferred to the piano’s soundboard. As the soundboard vibrates, it

exerts a force on air molecules around it, causing air molecules to move.

Because this force is exerted through displacement of the soundboard, the

soundboard does work on the air. Thus, as the soundboard vibrates back and

forth, its kinetic energy is converted into sound waves. This is one reason that

the vibration of the soundboard gradually dies out.

Intensity is the rate of energy flow through a given area

As described in Section 13-1, sound waves traveling in air are longitudinal

waves. As the sound waves travel outward from the source, energy is trans-

ferred from one air molecule to the next. The rate at which this energy is trans-

ferred through a unit area of the plane wave is called the intensity of the wave.

Because power, P, is defined as the rate of energy transfer, intensity can also be

described in terms of power.

intensity = 
∆
a

E

r

/

e

∆
a

t
 = 

ar

P

ea


As seen in Chapter 5, the SI unit for power is the watt. Thus, intensity has

units of watts per square meter (W/m2). In a spherical wave, energy propa-

gates equally in all directions; no one direction is preferred over any other. In

this case, the power emitted by the source (P) is distributed over a spherical

surface (area = 4pr2), assuming that there is no absorption in the medium.

This equation shows that the intensity of a sound wave decreases as the dis-

tance from the source (r) increases. This occurs because the same amount of

energy is spread over a larger area.

INTENSITY OF A SPHERICAL WAVE

intensity = 
4p

P

r2


(power)
intensity =

(4p)(distance from the source)2

13-2
Sound intensity and resonance

13-2 SECTION OBJECTIVES

• Calculate the intensity of
sound waves.

• Relate intensity, decibel level,
and perceived loudness.

• Explain why resonance
occurs.

Sound 487

intensity

the rate at which energy flows
through a unit area perpendicular
to the direction of wave motion

Figure 13-9
As this piano wire vibrates, it transfers
energy to the piano’s soundboard, which
in turn transfers energy into the air in
the form of sound.
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SAMPLE PROBLEM 13A

Intensity of sound waves

P R O B L E M
What is the intensity of the sound waves produced by a trumpet at a dis-
tance of 3.2 m when the power output of the trumpet is 0.20 W? Assume
that the sound waves are spherical.

S O L U T I O N
Given: P = 0.20 W r = 3.2 m

Unknown: Intensity = ?

Use the equation for the intensity of a spherical wave, given on page 487.

Intensity = 
4p

P

r2


Intensity = 
4p

0

(

.

3

2

.

0

2

W

m)2


Intensity = 1.6 ×10−3 W/m2

CALCULATOR SOLUTION

The calculator answer for intensity is
0.0015542. This is rounded to 
1.6 × 10−3 because each of the given
quantities has two significant figures.

1. Calculate the intensity of the sound waves from an electric guitar’s

amplifier at a distance of 5.0 m when its power output is equal to each of

the following values:

a. 0.25 W

b. 0.50 W

c. 2.0 W

2. At a maximum level of loudness, the power output of a 75-piece orches-

tra radiated as sound is 70.0 W. What is the intensity of these sound

waves to a listener who is sitting 25.0 m from the orchestra?

3. If the intensity of a person’s voice is 4.6 × 10−7 W/m2 at a distance of

2.0 m, how much sound power does that person generate?

4. How much power is radiated as sound from a band whose intensity is 

1.6 × 10−3 W/m2 at a distance of 15 m?

5. The power output of a tuba is 0.35 W. At what distance is the sound

intensity of the tuba 1.2 × 10−3 W/m2?

PRACTICE 13A

Intensity of sound waves

Chapter 13488
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A 75-piece orchestra produces
about 75 W at its loudest. This is
comparable to the power required
to keep one medium-sized electric
light bulb burning. Speech has even
less power. It would take the con-
versation of about 2 million people
to provide the amount of power 
required to keep a 50 W light 
bulb burning.

489Sound

Intensity and frequency determine which sounds are audible

As you saw in Section 13-1, the frequency of sound waves heard by the average

human ranges from 20 to 20 000 Hz. Intensity is also a factor in determining

which sound waves are audible. Figure 13-10 shows how the range of audibil-

ity of the average human ear depends on both frequency and intensity. As you

can see in this graph, sounds at low frequencies (those below 50 Hz) or high

frequencies (those above 12 000 Hz) must be relatively intense to be heard,

whereas sounds in the middle of the spectrum are audible at lower intensities.

The softest sounds that can be heard by the average human ear occur at a

frequency of about 1000 Hz and an intensity of 1.0 × 10−12 W/m2. Such a

sound is said to be at the threshold of hearing. (Note that some humans can

hear slightly softer sounds, at a frequency of about 3300 Hz.) The threshold of

hearing at each frequency is represented by the lowest curve in Figure 13-10.
At the threshold of hearing, the changes in pressure due to compressions and

rarefactions are about three ten-billionths of atmospheric pressure.

The maximum displacement of an air molecule at the threshold of hearing

is approximately 1 × 10−11 m. Comparing this number to the diameter of a

typical air molecule (about 1 × 10−10 m) reveals that the ear is an extremely

sensitive detector of sound waves.

The loudest sounds that the human ear can tolerate have an intensity of

about 1.0 W/m2. This is known as the threshold of pain because sounds with

greater intensities can produce pain in addition to hearing. The highest curve

in Figure 13-10 represents the threshold of pain at each frequency. Exposure

to sounds above the threshold of pain can cause immediate damage to the ear,

even if no pain is felt. Prolonged exposure to sounds of lower intensities can

also damage the ear. For this reason, many rock musicians wear earplugs dur-

ing their performances, and some rock stars must wear hearing aids. Note that

the threshold of hearing and the threshold of pain merge at both high and low

ends of the spectrum.

In
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Figure 13-10
Human hearing depends on both
the frequency and the intensity of
sound waves. Sounds in the middle
of the spectrum of frequencies can
be heard more easily (at lower
intensities) than those at lower and
higher frequencies.
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The original unit of decibel level is
the bel, named in honor of Alexan-
der Graham Bell, the inventor of
the telephone. The decibel is 
equivalent to 0. 1 bel.

decibel level

relative intensity, determined by
relating the intensity of a sound
wave to the intensity at the
threshold of hearing

Table 13-2 Conversion of intensity to decibel level

Intensity (W/m2) Decibel level (dB) Examples

1.0 × 10− 12 0 threshold of hearing

1.0 × 10− 1 1 10 rustling leaves

1.0 × 10− 10 20 quiet whisper

1.0 × 10−9 30 whisper

1.0 × 10−8 40 mosquito buzzing

1.0 × 10−7 50 normal conversation

1.0 × 10−6 60 air conditioning at 6 m

1.0 × 10−5 70 vacuum cleaner

1.0 × 10−4 80 busy traffic, alarm clock

1.0 × 10−3 90 lawn mower

1.0 × 10−2 100 subway, power motor

1.0 × 10− 1 1 10 auto horn at 1 m

1.0 × 100 120 threshold of pain

1.0 × 101 130 thunderclap, machine gun

1.0 × 103 150 nearby jet airplane

Relative intensity is measured in decibels

Just as the frequency of a sound wave determines its pitch, the intensity of a

wave determines its loudness, or volume. However, volume is not directly pro-

portional to intensity. For example, a sound twice the intensity of the faintest

audible sound is not perceived as being twice as loud. This is because the sen-

sation of loudness is approximately logarithmic in the human ear.

Relative intensity, which is found by relating the intensity of a given sound

wave to the intensity at the threshold of hearing, corresponds more closely to

human perceptions of loudness. Relative intensity is also referred to as decibel
level because relative intensity is measured in units called decibels (dB). The

decibel is a dimensionless unit because it relates one intensity to another.

The conversion of intensity to decibel level is shown in Table 13-2. Notice in

Table 13-2 that when the intensity is multiplied by 10, 10 dB are added to the

decibel level. A difference in 10 dB means the sound is approximately twice as

loud. Although much more intensity (0.9 W/m2) is added between 110 and

120 dB than between 10 and 20 dB (9 × 10−11 W/m2), in each case the volume

doubles. Because the volume doubles each time the decibel level increases by 10,

sounds at the threshold of pain are 4096 times as loud as sounds at the threshold

of hearing.
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FORCED VIBRATIONS AND RESONANCE

When an isolated guitar string is held taut and plucked, hardly any sound is

heard. When the same string is placed on a guitar and plucked, the intensity of

the sound increases dramatically. What is responsible for this difference? To

find the answer to this question, consider a set of pendulums suspended from

a beam and bound by a loose rubber band, as shown in Figure 13-11. If one of

the pendulums is set in motion, its vibrations are transferred by the rubber

band to the other pendulums, which will also begin vibrating. This is called a

forced vibration.

The vibrating strings of a guitar force the bridge of the guitar to vibrate,

and the bridge in turn transfers its vibrations to the guitar body. These forced

vibrations are called sympathetic vibrations. The guitar body enables the

strings’ vibrations to be transferred to the air much more quickly because it

has a larger area than the strings. As a result, the intensity of the sound is

increased, and the strings’ vibrations die out faster than they would if they

were not attached to the body of the guitar. In other words, the guitar body

allows the energy exchange between the strings and the air to happen more

efficiently, thereby increasing the intensity of the sound produced.

In an electric guitar, string vibrations are translated into electrical im-

pulses, which can be amplified as much as desired. An electric guitar can pro-

duce sounds that are much more intense than those of an unamplified

acoustic guitar, which uses only the forced vibrations of the guitar’s body to

increase the intensity of the sound from the vibrating strings.

Vibration at the natural frequency produces resonance

As you saw in Chapter 12, the frequency of a pendulum depends on its string

length. Thus, every pendulum will vibrate at a certain frequency, known as its

natural frequency. In Figure 13-11, the two blue pendulums have the same

natural frequency, while the red and green pendulums have different natural

frequencies. When the first blue pendulum is set in motion, the red and green

pendulums will vibrate only slightly, but the second blue pendulum will oscil-

late with a much larger amplitude because its natural frequency matches the

Figure 13-11
If one blue pendulum is set in
motion, only the other blue pendu-
lum, whose length is the same, will
eventually oscillate with a large
amplitude, or resonate.

Resonance

M A T E R I A L S  L I S T

✔ swing set

Go to a playground, and swing on one
of the swings. Try pumping (or being
pushed) at different rates—faster than,
slower than, and equal to the natural fre-
quency of the swing. Observe whether
the rate at which you pump (or are
pushed) affects how easily the amplitude
of the vibration increases. Are some rates

more effective at building your amplitude
than others? You should find that the push-
es are most effective when they match the
swing’s natural frequency. Explain how
your results support the statement that
resonance works best when the frequency
of the applied force matches the system’s
natural frequency.

TOPIC: Resonance
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1. Concert If a 15-person musical ensemble
gains 15 new members, so that its size doubles, will a
listener perceive the music created by the ensemble
to be twice as loud? Why or why not?

2. A noisy factory Federal regulations require
that no office or factory worker be exposed to noise
levels that average above 90 dB over an 8 h day.
Thus, a factory that currently averages 100 dB must
reduce its noise level by 10 dB. Assuming that each
piece of machinery produces the same amount of
noise, what percentage of equipment must be
removed? Explain your answer.

3. Broken crystal Opera singers have been
known to set crystal goblets in vibration with their
powerful voices. In fact, an amplified human voice 
can shatter the glass, but only at certain fundamental
frequencies. Speculate about why only certain fun-
damental frequencies will break the glass.

4. Electric guitars Electric guitars,
which use electric amplifiers to 
magnify their sound, can have a vari-
ety of shapes, but acoustic guitars
must have an hourglass shape.
Explain why.

Figure 13-12
On November 7, 1940, the Tacoma Narrows suspension bridge
collapsed, just four months after it opened. Standing waves caused
by strong winds set the bridge in motion and led to its collapse.

frequency of the pendulum that was initially set in motion. This system is said

to be in resonance. Since energy is transferred from one pendulum to the

other, the amplitude of vibration of the first blue pendulum will decrease as

the second blue pendulum’s amplitude increases.

A striking example of structural resonance occurred in 1940, when the

Tacoma Narrows bridge, in Washington, shown in Figure 13-12, was set in

motion by the wind. High winds set up standing waves in the bridge, causing

the bridge to oscillate at one of its natural frequencies. The amplitude of the

vibrations increased until the bridge collapsed. A more recent example of

structural resonance occurred during the Loma Prieta earthquake near Oak-

land, California, in 1989, when part of the upper deck of a freeway collapsed.

The collapse of this particular section of roadway has been traced to the fact

that the earthquake waves had a frequency of 1.5 Hz, very close to the natural

frequency of that section of the roadway.

resonance

a condition that exists when the
frequency of a force applied to a
system matches the natural fre-
quency of vibration of the system

Copyright © by Holt, Rinehart and Winston. All rights reserved.
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Section Review

1. When the decibel level of traffic in the street goes from 40 to 60 dB, how

much louder does the traffic noise seem? How much greater is the intensity?

2. If two flutists play their instruments together at the same intensity, is the

sound twice as loud as that of either flutist playing alone at that intensity?

Why or why not?

3. Which of the following factors change when a sound gets louder? Which

change when a pitch gets higher?

a. intensity

b. speed of the sound waves 

c. frequency

d. decibel level

e. wavelength

f. amplitude

4. A tuning fork consists of two metal prongs that vibrate at a single fre-

quency when struck lightly. What will happen if a vibrating tuning fork is

placed near another tuning fork of the same frequency? Explain.

5. Physics in Action A certain microphone placed in the ocean is

sensitive to sounds emitted by dolphins. To produce a usable signal, sound

waves striking the microphone must have a decibel level of 10 dB. If dol-

phins emit sound waves with a power of 0.050 W, how far can a dolphin

be from the microphone and still be heard? (Assume the sound waves

propagate spherically, and disregard absorption of the sound waves.)

The human ear transmits vibrations that cause nerve impulses

The human ear is divided into three sections—outer, middle, and inner—as

shown in Figure 13-13. Sound waves from the atmosphere travel down the

ear canal of the outer ear. The ear canal terminates at a thin, flat piece of tissue

called the eardrum.

The eardrum vibrates with the sound waves and transfers these vibrations

to the three small bones of the middle ear, known as the hammer, the anvil,

and the stirrup. These bones in turn transmit the vibrations to the inner ear,

which contains a snail-shaped tube about 2 cm long called the cochlea.

The cochlea is divided along its length by the basilar membrane, which con-

sists of small hairs and nerve fibers. This membrane has different natural fre-

quencies at different positions. Sound waves of varying frequencies resonate at

different spots along the basilar membrane, creating impulses in different nerve

fibers. These impulses are then sent to the brain, which interprets them as

sounds of varying frequencies.

Middle
ear

Inner
ear

Outer
ear

Eardrum

Cochlea

Basilar
membrane

Hammer
Anvil

Stirrup

Figure 13-13
Sound waves travel through the
three regions of the ear and are
then transmitted to the brain as
impulses through nerve endings on
the basilar membrane.



Copyright © by Holt, Rinehart and Winston. All rights reserved.
Chapter 13494

STANDING WAVES ON A VIBRATING STRING

As discussed in Chapter 12, a variety of standing waves can occur when a string

is fixed at one end and set into vibration at the other by a tuning fork or your

moving hand. The vibrations on the string of a musical instrument, such as the

violin in Figure 13-14, usually consist of many standing waves together at the

same time, each of which has a different wavelength and frequency. So the

sounds you hear from a stringed instrument, even those that sound like a sin-

gle pitch, actually consist of multiple frequencies.

Table 13-3, on page 495, shows several possible vibrations on an idealized

string. The ends of the string, which cannot vibrate, must always be nodes. The

simplest vibration that can occur is shown in the first row of Table 13-3. In this

case, the center of the string experiences the most displacement, and so it is an

antinode. Because the distance from one node to the next is always half a wave-

length, the string length must equal l1/2. Thus, the wavelength is twice the

string length (l1 = 2L).

As described in Chapter 12, the speed of a wave equals the frequency times

the wavelength, which can be rearranged as shown.

v = fl, so f = 
l
v



By substituting the value for wavelength found above into this equation for

frequency, we see that the frequency of this vibration is equal to the speed of

the wave divided by twice the string length.

fundamental frequency = f1 = 
l
v

1
 = 

2

v

L


This frequency of vibration is called the fundamental frequency of the

vibrating string. Because frequency is inversely proportional to wavelength

and because we are considering the greatest possible wavelength, the funda-

mental frequency is the lowest possible frequency of a standing wave.

Harmonics are integral multiples of the fundamental frequency

The next possible standing wave for a string is shown in the second row of

Table 13-3. In this case, there are three nodes instead of two, so the string

length is equal to one wavelength. Because this wavelength is half the previous

wavelength, the frequency of this wave is twice as much.

f2 = 2f1

13-3
Harmonics

Figure 13-14
The vibrating strings of a violin 
produce standing waves whose 
frequencies depend on the 
string lengths.

13-3 SECTION OBJECTIVES

• Differentiate between the
harmonic series of open and
closed pipes.

• Calculate the harmonics of a
vibrating string and of open
and closed pipes.

• Relate harmonics and 
timbre.

• Relate the frequency differ-
ence between two waves to
the number of beats heard
per second.

fundamental frequency

the lowest frequency of vibration
of a standing wave
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This pattern continues, and the frequency of the standing wave shown in

the third row of Table 13-3 is three times the fundamental frequency. Hence,

the frequencies of the standing wave patterns are all integral multiples of the

fundamental frequency. These frequencies form what is called a harmonic
series. The fundamental frequency ( f1) corresponds to the first harmonic, the

next frequency ( f2) corresponds to the second harmonic, and so on.

Because each harmonic is an integral multiple of the fundamental fre-

quency, the equation for the fundamental frequency can be generalized to

include the entire harmonic series. Thus, fn = nf1, where f1 is the fundamental 

frequency ( f1 = 
2

v

L
) and fn is the frequency of the nth harmonic. Note that v is 

the speed of waves on the vibrating string and not the speed of the resultant

sound waves in air.

When a guitar player presses down on a guitar string at any point, that

point becomes a node and only a portion of the string vibrates. As a result, a

single string can be used to create a variety of fundamental frequencies. In the

previous equation, L refers to the portion of the string that is vibrating.

HARMONIC SERIES OF STANDING WAVES ON A VIBRATING STRING

fn = n 
2

v

L
 n = 1, 2, 3, . . .

(speed of waves on the string)
frequency = harmonic number ×

(2)(length of vibrating string)

Table 13-3 The harmonic series

l1 = 2L f1 fundamental frequency,
or first harmonic

l2 = L f2 = 2f1 second harmonic

l3 = 2
3

L f3 = 3f1 third harmonic

l4 = 1
2

L f4 = 4f1 fourth harmonic

A

N N

A A

N

N

N

AA A

N N

A A AA

N N

N

N N N

N

harmonic series

a series of frequencies that
includes the fundamental fre-
quency and integral multiples of
the fundamental frequency
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A flute is similar to a pipe open at
both ends. When all keys of a flute
are closed, the length of the vibrat-
ing air column is approximately
equal to the length of the flute. As
the keys are opened one by one,
the length of the vibrating air col-
umn decreases, and the fundamental
frequency increases.

Chapter 13496

Figure 13-16
In a pipe open at both ends, each
end is an antinode, and all harmon-
ics are present. Shown here are the
(a) first, (b) second, and (c) third
harmonics.

L

(a) (b) (c)

N
N

A

A
A

N

A

A

Harmonics in an open-ended pipe

l  =2L

1

1

112 32L
v vf  = 

l   =L2

L
f   = 

 l   =    L3

2L
3v
3
2

f   =  = 3f= 2f

N

N

A

A

N

A

A

Figure 13-15
The harmonic series present in
each of these organ pipes depends
on whether the end of the pipe is
open or closed.

STANDING WAVES IN AN AIR COLUMN

Standing waves can also be set up in a tube of air, such as the inside of a trum-

pet, the column of a saxophone, or the pipes of an organ like those shown in

Figure 13-15. While some waves travel down the tube, others are reflected back

upward. These waves traveling in opposite directions combine to produce

standing waves. Many brass instruments and woodwinds produce sound by

means of these vibrating air columns.

If both ends of a pipe are open, all harmonics are present

The harmonic series present in an organ pipe depends on whether the reflect-

ing end of the pipe is open or closed. When the reflecting end of the pipe is

open, as is illustrated in Figure 13-16, the air molecules have complete free-

dom of motion, so an antinode exists at this end. If a pipe is open at both

ends, each end is an antinode. This is the exact opposite of a string fixed at

both ends, where both ends are nodes.

Because the distance from one node to the next (1
2

l) equals the distance from

one antinode to the next, the pattern of standing waves that can occur in a pipe

open at both ends is the same as that of a vibrating string. Thus, the entire har-

monic series is present in this case, as shown in Figure 13-16, and our earlier

equation for the harmonic series of a vibrating string can be used.

In this equation, L represents the length of the vibrating air column. Just as

the fundamental frequency of a string instrument can be varied by changing

the string length, the fundamental frequency of many woodwind and brass

instruments can be varied by changing the length of the vibrating air column.

HARMONIC SERIES OF A PIPE OPEN AT BOTH ENDS

fn = n 
2

v

L
 n = 1, 2, 3, . . .

(speed of sound in the pipe)
frequency = harmonic number ×

(2)(length of vibrating air column)
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A Pipe Closed at One End

M A T E R I A L S  L I S T

✔ straw

✔ scissors

SAFETY CAUTION

Always use caution when working
with scissors.

Snip off the corners of one end
of the straw so that the end tapers
to a point, as shown above. Chew
on this end to flatten it, and you
create a double-reed instrument!
Put your lips around the tapered
end of the straw, press them
together tightly, and blow through
the straw. When you hear a steady
tone, slowly snip off pieces of the
straw at the other end. Be careful
to keep about the same amount of
pressure with your lips. How does
the pitch change as the straw
becomes shorter? How can you
account for this change in pitch?
You may be able to produce more
than one tone for any given length
of the straw. How is this possible?
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If one end of a pipe is closed, only odd harmonics are present

When one end of an organ pipe is closed, as is illustrated in Figure 13-17, the

movement of air molecules is restricted at this end, making this end a node. In

this case, one end of the pipe is a node and the other is an antinode. As a

result, a different set of standing waves can occur.

As shown in Figure 13-17(a), the simplest possible standing wave that can

exist in this pipe is equal to one-fourth of a wavelength. The wavelength of this

standing wave equals four times the length of the pipe. Thus, in this case, the

fundamental frequency equals the velocity divided by four times the pipe length.

f1 = 
l
v

1
 = 

4

v

L


For the case shown in Figure 13-17(b), there is three-fourths of a wave-

length in the pipe, so the wavelength is four-thirds the length of the pipe (l3 = 4
3

L).

Substituting this value into the equation for frequency gives the frequency of

this harmonic.

f3 = 
l
v

3
 = = 

4

3

L

v
 = 3f1

Notice that the frequency of this harmonic is three times the fundamental

frequency. Repeating this calculation for the case shown in Figure 13-17(c)
gives a frequency equal to five times the fundamental frequency. Thus, only

the odd-numbered harmonics vibrate in a pipe closed at one end.

As with the vibrating string, we can generalize the equation for the har-

monic series of a pipe closed at one end.

HARMONIC SERIES OF A PIPE CLOSED AT ONE END

fn = n 
4

v

L
 n = 1, 3, 5, . . .

(speed of sound in the pipe)
frequency = harmonic number ×

(4)(length of vibrating air column)

v

4
3

L

Figure 13-17
In a pipe closed at one end, the
closed end is a node and the open
end is an antinode. In this case, only
the odd harmonics are present.
The (a) first, (b) third, and (c) fifth
harmonics are shown here.

L

(a) (b) (c)

N
N

A

A

N

A

A

Harmonics in a pipe closed at one end

1

1

3

3
v

N

N

A

N

A

l  = 4L

11 5f  = 

l  =  L
3

3v

4

f  = 

l   =  L5
5v
5
4

f  =  = 5f= 3f
4L4L 4L
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SAMPLE PROBLEM 13B

Harmonics

P R O B L E M
What are the first three harmonics in a 2.45 m long pipe that is open at
both ends? What are the first three harmonics of this pipe when one end
of the pipe is closed? Assume that the speed of sound in air is 345 m/s for
both of these situations.

S O L U T I O N
Given: L = 2.45 m v = 345 m/s

Unknown: Pipe open at both ends: f1 f2 f3

Pipe closed at one end: f1 f3 f5

Choose an equation(s) or situation:
When the pipe is open, all harmonics are present. Thus, the fundamental fre-

quency can be found by using the equation for the entire harmonic series,

given on page 496:

fn = n 
2

v

L
, n = 1, 2, 3, . . .

When the pipe is closed at one end, only odd harmonics are present. In this

case, the fundamental frequency is found by using the equation for the odd

harmonic series, given on page 497:

fn = n 
4

v

L
, n = 1, 3, 5, . . .

In both cases, the second two harmonics can be found by multiplying the

harmonic numbers by the fundamental frequency.

1. DEFINE

2. PLAN

Trumpets, saxophones, and clarinets are similar to a pipe closed at one end.

Although a trumpet has two open ends, the player’s mouth effectively closes one

end of the instrument. In a saxophone or a clarinet, the reed closes one end.

Despite the similarity between these instruments and a pipe closed at one

end, our equation for the harmonic series of pipes does not directly apply to

such instruments because any deviation from the cylindrical shape of a pipe

affects the harmonic series of an instrument. For example, a clarinet is primar-

ily cylindrical, but because the open end of the instrument is bell-shaped, there

are some even harmonics in a clarinet’s tone at relatively small intensities. The

shape of a saxophone is such that the harmonic series in a saxophone is similar

to a cylindrical pipe open at both ends even though only one end of the saxo-

phone is open. These deviations are in part responsible for the variety of

sounds that can be produced by different instruments.
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1. What is the fundamental frequency of a 0.20 m long organ pipe that is

closed at one end, when the speed of sound in the pipe is 352 m/s?

2. A flute is essentially a pipe open at both ends. The length of a flute is

approximately 66.0 cm. What are the first three harmonics of a flute when

all keys are closed, making the vibrating air column approximately equal

to the length of the flute? The speed of sound in the flute is 340 m/s.

3. What is the fundamental frequency of a guitar string when the speed of

waves on the string is 115 m/s and the effective string lengths are as follows:

a. 70.0 cm b. 50.0 cm c. 40.0 cm

4. A violin string that is 50.0 cm long has a fundamental frequency of 440 Hz.

What is the speed of the waves on this string?

PRACTICE 13B

Harmonics

For a pipe open at both ends:

f1 = n 
2

v

L
 = (1)�(2

3

)(

4

2

5

.4

m

5

/

m

s

)
� =

Because all harmonics are present in this case, the next two harmonics are the

second and the third:

f2 = 2f1 = (2)(70.4 Hz) =

f3 = 3f1 = (3)(70.4 Hz) =

For a pipe closed at one end:

f1 = n 
4

v

L
 = (1)�(4

3

)(

4

2

5

.4

m

5

/

m

s

)
� =

Only the odd harmonics are present in this case, so the next possible har-

monics are the third and the fifth:

f3 = 3f1 = (3)(35.2 Hz) =

f5 = 5f1 = (5)(35.2 Hz) =

In a pipe open at both ends, the first possible wavelength is 2L; in a pipe

closed at one end, the first possible wavelength is 4L. Because frequency and

wavelength are inversely proportional, the fundamental frequency of the

open pipe should be twice that of the closed pipe, that is, 70.4 = (2)(35.2).

176 Hz

106 Hz

35.2 Hz

211 Hz

141 Hz

70.4 Hz

4. EVALUATE

3. CALCULATE
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Harmonics account for sound quality, or timbre

Table 13-4, on page 501, shows the harmonics present in a tuning fork, a clar-

inet, and a viola when each sounds the musical note A-natural. Each instru-

ment has its own characteristic mixture of harmonics at varying intensities.

The harmonics shown in the second column of Table 13-4 add together

according to the principle of superposition to give the resultant waveform

shown in the third column. Since a tuning fork vibrates at only its fundamental

frequency, its waveform is simply a sine wave. (Some tuning forks also vibrate

at higher frequencies when they are struck hard enough.) The waveforms of

the other instruments are more complex because they consist of many har-

monics, each at different intensities. Each individual harmonic waveform is a

sine wave, but the resultant wave is more complex than a sine wave because

each individual waveform has a different frequency.

The different waveforms shown in the third column of Table 13-4 explain

why a clarinet sounds different from a viola, even when both instruments are

sounding the same note at the same volume. In music, the mixture of har-

monics that produces the characteristic sound of an instrument is referred to

as the spectrum of the sound, which results in a response in the listener called

sound quality, or timbre. The rich harmonics of most instruments provide a

much fuller sound than that of a tuning fork.

Auditoriums, churches, concert halls, libraries, and
music rooms are designed with specific functions in
mind. One auditorium may be made for rock con-
certs, while another is constructed for use as a lec-
ture hall. Your school’s auditorium, for instance, may
allow you to hear a speaker well but make a band
sound damped and muffled.

Rooms are often constructed so that sounds made
by a speaker or a musical instrument bounce back
and forth against the ceiling, walls, floor, and other
surfaces. This repetitive echo is called reverberation.
The reverberation time is the amount of time it
takes for a sound’s intensity to decrease by 60 dB.

For speech, the auditorium should be designed so
that the reverberation time is relatively short. A
repeated echo of each word could become confus-
ing to listeners.

Music halls may also differ in construction depend-
ing on the type of music usually played there. For

example, rock music is generally less pleasing with
a large amount of reverberation, but more rever-
beration is sometimes desired for orchestral and
choral music.

For these reasons, you may notice a difference in
the way ceilings, walls, and furnishings are designed
in different rooms. Ceilings designed for a lot of
reverberation are flat and hard. Ceilings in libraries
and other quiet places
are often made of soft or
textured material to
muffle sounds. Padded
furnishings and plants
can also be strategically
arranged to absorb
sound. All of these differ-
ent factors are consid-
ered and combined to
accomodate the audi-
tory function of a room.

Reverberation

TOPIC: Acoustics
GO TO: www.scilinks.org
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timbre

the quality of a steady musical
sound that is the result of a mix-
ture of harmonics present at dif-
ferent intensities
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The intensity of each harmonic varies within a particular instrument,

depending on frequency, amplitude of vibration, and a variety of other fac-

tors. With a violin, for example, the intensity of each harmonic depends on

where the string is bowed, the speed of the bow on the string, and the force the

bow exerts on the string. Because there are so many factors involved, most

instruments can produce a wide variety of tones.

Even though the waveforms of a clarinet and a viola are more complex

than those of a tuning fork, note that each consists of repeating patterns. Such

waveforms are said to be periodic. These repeating patterns occur because

each frequency is an integral multiple of the fundamental frequency.

Fundamental frequency determines pitch

As you saw in Section 13-1, the frequency of a sound determines its pitch. In

musical instruments, the fundamental frequency of a vibration typically deter-

mines pitch. Other harmonics are sometimes referred to as overtones. In the

chromatic (half-step) musical scale, there are 12 notes, each of which has a char-

acteristic frequency. The frequency of the thirteenth note is exactly twice that of

the first note, and together the 13 notes constitute an octave. For stringed instru-

ments and open-ended wind instruments, the frequency of the second har-

monic of a note corresponds to the frequency of the octave above that note.

Table 13-4 Harmonics of a tuning fork, a clarinet, and a viola at the same pitch

Tuning fork

Clarinet

Viola

Resultant waveformHarmonics
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BEATS

So far, we have considered the superposition of waves in a harmonic series,

where each frequency is an integral multiple of the fundamental frequency.

When two waves of slightly different frequencies interfere, the interference pat-

tern varies in such a way that a listener hears an alternation between loudness

and softness. The variation from soft to loud and back to soft is called a beat.

Sound waves at slightly different frequencies produce beats

Figure 13-18 shows how beats occur. In Figure 13-18(a), the waves produced

by two tuning forks of different frequencies start exactly opposite one another.

These waves combine according to the superposition principle, as shown in Fig-
ure 13-18(b). When the two waves are exactly opposite one another, they are

said to be out of phase, and complete destructive interference occurs. For this rea-

son, no sound is heard at t1.

Because these waves have different frequencies, after a few more cycles, the

crest of the blue wave matches up with the crest of the red wave, as at t2. At this

1. Piano tuning How does a piano tuner use 
a tuning fork to adjust a piano wire to a certain 
fundamental frequency?

2. Concert violins Before a performance, musi-
cians tune their instruments to match their fundamen-
tal frequencies. If a conductor hears the number of
beats decreasing as two violin players are tuning, are
the fundamental frequencies of these violins becoming
closer together or farther apart? Explain.

3. Sounds from a guitar Will the speed
of waves on a vibrating guitar string be the 
same as the speed of the sound waves in the 
air that are generated by this vibration? 
How will the frequency and wave-
length of the waves on the string 
compare with the frequency 
and wavelength of the 
sound waves in the air?

beat

interference of waves of slightly
different frequencies traveling in
the same direction, perceived as
a variation in loudness

(a)

Destructive
interference

Destructive
interference

Constructive
interference

(b)

t1 t2 t3

Figure 13-18
Beats are formed by the interfer-
ence of two waves of slightly differ-
ent frequencies traveling in the
same direction. In this case, one
beat occurs at t2, where construc-
tive interference is greatest.

Chapter 13
Copyright © by Holt, Rinehart and Winston. All rights reserved.
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Section Review

1. On a piano, the note middle C has a fundamental frequency of 264 Hz.

What is the second harmonic of this note?

2. If the piano wire in item 1 is 66.0 cm long, what is the speed of waves on

this wire?

3. A piano tuner using a 392 Hz tuning fork to tune the wire for G-natural

hears four beats per second. What are the two possible frequencies of

vibration of this piano wire?

4. In a clarinet, the reed end of the instrument acts as a node and the first

open hole acts as an antinode. Because the shape of the clarinet is nearly

cylindrical, its harmonic series approximately follows that of a pipe

closed at one end. What harmonic series is predominant in a clarinet?

5. Which of the following must be different for a trumpet and a banjo

when notes are being played by both at the same fundamental frequency?

a. wavelength in air of the first harmonic

b. number of harmonics present

c. intensity of each harmonic

d. speed of sound in air

The ability to detect beats depends
on an individual’s hearing and musical
training. The average human ear can
distinguish beats up to a frequency of
approximately 10 beats per second.

point, the waves are said to be in phase. Now constructive interference occurs,

and the sound is louder. Because the blue wave has a higher frequency than the

red wave, the waves are out of phase again at t3, and no sound is heard.

As time passes, the waves continue to be in and out of phase, the interference

constantly shifts between constructive interference and destructive interference,

and the listener hears the sound getting softer and louder and then softer again.

You may have noticed a similar phenomenon on a playground swing set. If two

people are swinging next to one another at different frequencies, the two swings

may alternate between being in phase and being out of phase.

The number of beats per second corresponds to the difference
between frequencies

In our previous example, there is one beat, which occurs at t2. One beat corre-

sponds to the blue wave gaining one entire cycle on the red wave. This is

because to go from one destructive interference to the next, the red wave must

lag one entire cycle behind the blue wave. If the time that lapses from t1 to t3 is

one second, then the blue wave completes one more cycle per second than the

red wave. In other words, its frequency is greater by 1 Hz. By generalizing this,

you can see that the frequency difference between two sounds can be found by

the number of beats heard per second.



Copyright © by Holt, Rinehart and Winston. All rights reserved.
Chapter 13504

Table 13-5      The Doppler effect for light

no shift

blue shift

red shift

stationary
source

v = 0

approaching
source

receding
source

v

v

Earlier in this chapter,

you learned that relative

motion between the source of sound

waves and an observer creates a frequency shift

known as the Doppler effect. For visible light, the Doppler effect is observed

as a change in color because the frequency of light waves determines color.

Frequency shifts

Of the colors of the visible spectrum, red light has the lowest frequency and

violet light has the highest. When the source of electromagnetic waves is mov-

ing toward an observer, the frequency detected is higher than the source fre-

quency. This corresponds to a shift toward the blue end of the spectrum,

which is called a blue shift. When the source of electromagnetic waves is mov-

ing away from an observer, the observer detects a lower frequency, which cor-

responds to a shift toward the red end of the spectrum, called a red shift. These

two types of frequency shifts are known as blue shift and red shift, respectively,

even though this shift occurs for any type of radiation, not just visible light.

In astronomy, the light from distant stars or galaxies is analyzed by a

process called spectroscopy. In this process, starlight is passed through a prism

or diffraction grating to produce a spectrum. Dark lines appear in the spec-

trum at specific frequencies determined by the elements present in the atmos-

pheres of stars. When these lines are shifted toward the red end of the

spectrum, astronomers know the star is moving away from Earth; when the

lines are shifted toward the blue end, the star is moving toward Earth.
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The expansion of the universe

As scientists began to study other galaxies with spectroscopy, the results were

astonishing: nearly all of the galaxies that were observed exhibited a red shift,

which suggested that they were moving away from Earth. If all galaxies are

moving away from Earth, the universe must be expanding. This does not sug-

gest that Earth is at the center of the expansion; from any other point in the

universe, the same phenomenon would be observed.

The expansion of the universe suggests that at some point in the past the

universe must have been confined to a point of infinite density. The eruption

of the universe is often referred to as the big bang, which is generally considered

to have occurred between 10 billion and 20 billion years ago. Current models

indicate that the big bang involved such great amounts of energy in such a

small space that matter could not form clumps or even individual atoms. It

took about 700 000 years for the universe to cool from around 1032 K to

around 3000 K, a temperature cool enough for atoms to begin forming.

Experimental verification

In the 1960s, a group of scientists at Princeton predicted that the explosion of the

big bang was so momentous that a small amount of radiation—the 

leftover glow from the big bang—should still be found in the uni-

verse. Around this time, Arno Penzias and Robert Wilson, of Bell

Labs, noticed a faint background hiss interfering with satellite-

communications experiments they were conducting. This sig-

nal, which was detected in equal amounts in all directions,

remained despite all attempts to remove it. Penzias and Wil-

son learned of the Princeton group’s work and realized that

the interference they were experiencing matched the character-

istics of the radiation expected from the big bang. Subsequent

experiments have confirmed the existence of this radiation, known

as cosmic microwave background radiation. This background radiation

is considered to be the most conclusive evidence for the big bang theory.

The big bang theory is generally accepted by scientists today. Research now

focuses on more-detailed issues. However, there are certain phenomena that

the standard big bang model cannot account for, such as the uniform distri-

bution of matter on a large scale and the large-scale clustering of galaxies. As

a result, some scientists are currently working on modifications and refine-

ments to the standard big bang theory.

In December 1995, the Hubble Space Telescope obtained an image that

reveals galaxies so far away from Earth that their light must have left them 

10 billion to 20 billion years ago. This image shows the galaxies as they exist-

ed 10 billion to 20 billion years in the past, when the universe was less than a

billion years old. As technology improves, scientists can see galaxies even far-

ther away and, hence, even farther back in time. Such observations may

resolve many of the current questions regarding the origin of the universe.

Figure 13-19
Penzias and Wilson detected
microwave background radiation,
presumably left over from the big
bang, with the horn antenna (in
background) at Bell Telephone Lab-
oratories, in New Jersey.

Figure 13-20
This image, called the Hubble Deep
Field, is a composite of 342 separate
exposures taken by NASA’s Hubble
Space Telescope during 10 consecu-
tive days. Most of the objects are gal-
axies, each containing billions of
stars. The full image contains over
1500 galaxies, some perhaps dating
back to when galaxies first began
forming.
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KEY IDEAS

Section 13-1 Sound waves
• The frequency of a sound wave determines its pitch.

• The speed of sound depends on the medium.

• The relative motion between the source of waves and an observer creates

an apparent frequency shift known as the Doppler effect.

Section 13-2 Sound intensity and resonance
• The sound intensity of a spherical wave is the power per area, as follows:

• Decibel level is a measure of relative intensity on a logarithmic scale.

• A forced vibration at the natural frequency produces resonance.

Section 13-3 Harmonics
• Harmonics of a vibrating string or a pipe open at both ends can be found

with the following equation:

• Harmonics of a pipe closed at one end can be found with the following

equation:

• The number and intensity of harmonics account for the sound quality of

an instrument, also known as timbre.

CHAPTER 13
Summary

KEY TERMS

beat (p. 502)

compression (p. 480)

decibel level (p. 490)

Doppler effect (p. 485)

fundamental frequency 
(p. 494)

harmonic series (p. 495)

intensity (p. 487)

pitch (p. 481)

rarefaction (p. 480)

resonance (p. 492)

timbre (p. 500)

Variable symbols

Quantities Units

sound intensity W/m2 watts/meters squared

decibel level dB decibels

fn frequency of the nth harmonic Hz Hertz = s−1

L length of a vibrating string m meters
or an air column

Intensity = 
4p

P

r2


fn = n 
2

v

L
, n = 1, 2, 3, . . .

fn = n 
4

v

L
, n = 1, 3, 5, . . .



Copyright © by Holt, Rinehart and Winston. All rights reserved.
507Sound

SOUND WAVES

Review questions

1. Why are sound waves in air characterized as 
longitudinal?

2. Draw the sine curve that corresponds to the sound
wave depicted in Figure 13-21.

3. What is the difference between frequency and pitch?

4. Why can a dog hear a sound produced by a dog
whistle, while his owner cannot?

5. What are the differences between infrasonic,
audible, and ultrasonic sound waves?

6. Explain why the speed of sound depends on the
temperature of the medium. Why is this tempera-
ture dependence more noticeable in a gas than in a
solid or a liquid?

7. The Doppler effect occurs when

a. a source of sound moves toward a listener.
b. a listener moves toward a source of sound.
c. a listener and a source of sound move away

from each other.
d. a listener and a source of sound move toward

each other.
e. All of the above

8. You are at a street corner and hear an ambulance
siren. Without looking, how can you tell when the
ambulance passes by?

9. Ultrasound waves are often used to produce images
of objects inside the body. Why are ultrasound
waves effective for this purpose?

Conceptual questions

10. If the wavelength of a sound source is reduced by a
factor of 2, what happens to the wave’s frequency?
What happens to its speed?

11. As a result of a distant explosion, an observer first
senses a ground tremor, then hears the explosion.
What accounts for this time lag?

12. By listening to a band or an orchestra, how can you
determine that the speed of sound is the same for all
frequencies?

13. A sound wave travels in air at a frequency of 500 Hz.
If part of the wave travels from air into water, does
its frequency change? Does its wavelength change?
Note that the speed of sound in air is about 
340 m/s, whereas the speed of sound in water is
about 1500 m/s.

14. A fire engine is moving at 40 m/s and sounding its
horn. A car in front of the fire engine is moving at
30 m/s, and a van in front of the car is stationary.
Which observer hears the fire engine’s horn at a
higher pitch, the driver of the car or the driver of
the van?

15. A bat flying toward a wall emits a chirp at 40 kHz. Is
the frequency of the echo received by the bat greater
than, less than, or equal to 40 kHz?

SOUND INTENSITY AND RESONANCE

Review questions

16. If a sound seems to be getting louder, which of the
following is probably increasing?

a. intensity
b. frequency
c. speed of sound
d. wavelength

CHAPTER 13
Review and Assess

Figure 13-21
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28. A stereo speaker represented by
P in Figure 13-22 emits sound
waves with a power output of
100.0 W. What is the intensity
of the sound waves at point x
when r = 10.0 m?
(See Sample Problem 13A.)

HARMONICS

Review questions

29. What is fundamental frequency? How are har-
monics related to the fundamental frequency?

30. Figure 13-23 shows a stretched string vibrating 
in several of its modes. If the length of the string is
2.0 m, what is the wavelength of the wave on the
string in (a), (b), (c), and (d)?

31. Why does a pipe closed at one end have a different
harmonic series than an open pipe?

32. Explain why a saxophone sounds different from a
clarinet, even when they sound the same funda-
mental frequency at the same decibel level.

Conceptual questions

33. Why does a vibrating guitar string sound louder
when it is on the instrument than it does when it is
stretched on a work bench?

34. Two violin players tuning their instruments to-
gether hear six beats in 2 s. What is the frequency
difference between the two violins?

35. What is the purpose of the slide on a trombone and
the valves on a trumpet?

Figure 13-23

(a)

(b)

(c)

(d)

Figure 13-22

x
P

r

17. What is the difference between intensity, decibel
level, and volume?

18. Using Table 13-2 (page 490) as a guide, estimate the
decibel levels of the following sounds: a cheering
crowd at a football game, background noise in a
church, the pages of this textbook being turned, and
light traffic.

19. Why is the threshold of hearing represented as a
curve in Figure 13-10 (page 489) rather than as a
single point?

20. Under what conditions does resonance occur?

Conceptual questions

21. If the distance from a point source of sound is
tripled, by what factor does the sound intensity
decrease? Assume there are no reflections from
nearby objects to affect your results.

22. Why is the intensity of an echo less than that of the
original sound?

23. The decibel level of an orchestra is 90 dB, and a sin-
gle violin achieves a level of 70 dB. How do the
intensity and volume of the sound of the full
orchestra compare with those of the violin’s sound?

24. A noisy machine in a factory produces a decibel rat-
ing of 80 dB. How many identical machines could
you add to the factory without exceeding the 90 dB
limit set by federal regulations?

25. Why are pushes given to a playground swing more
effective if they are given at certain, regular intervals
than if they are given at random positions in the
swing’s cycle?

26. Although soldiers are usually required to march
together in step, they must break their march when
crossing a bridge. Explain the possible danger of cross-
ing a rickety bridge without taking this precaution.

Practice problems

27. A baseball coach shouts loudly at an umpire standing
5.0 meters away. If the sound power produced by the
coach is 3.1 × 10−3 W, what is the decibel level of the
sound when it reaches the umpire? (Hint: See Sample
Problem 13A, then use Table 13-2 on page 490.)



Copyright © by Holt, Rinehart and Winston. All rights reserved.
509Sound

36. A student records the first 10 harmonics for a pipe.
Is it possible to determine whether the pipe is open
or closed by comparing the difference in frequen-
cies between the adjacent harmonics with the fun-
damental frequency? Explain.

37. A flute is similar to a pipe open at both ends, while a
clarinet is similar to a pipe closed at one end. Explain
why the fundamental frequency of a flute is about
twice that of the clarinet, even though the length of
these two instruments is approximately the same.

38. The fundamental frequency of any note produced
by a flute will vary slightly with temperature changes
in the air. For any given note, will an increase in tem-
perature produce a slightly higher fundamental fre-
quency or a slightly lower one?

Practice problems

39. What are the first three harmonics of a note pro-
duced on a 31.0 cm long violin string if waves on
this string have a speed of 274.4 m/s?
(See Sample Problem 13B.)

40. The human ear canal is about 2.8 cm long and can
be regarded as a tube open at one end and closed at
the eardrum. What is the fundamental frequency
around which we would expect hearing to be best
when the speed of sound in air is 340 m/s?

(See Sample Problem 13B.)

MIXED REVIEW

41. A pipe that is open at both ends has a fundamental
frequency of 320 Hz when the speed of sound in air
is 331 m/s.

a. What is the length of this pipe?
b. What are the next two harmonics?
c. What is the fundamental frequency of this

pipe when the speed of sound in air is
increased to 367 m/s due to a rise in the tem-
perature of the air?

42. The area of a typical eardrum is approximately 
5.0 × 10−5 m2. Calculate the sound power (the en-
ergy per second) incident on the eardrum at

a. the threshold of hearing.
b. the threshold of pain.

43. The frequency of a tuning
fork can be found by the
method shown in Figure 
13-24. A long tube open at
both ends is submerged in a
beaker of water, and the
vibrating tuning fork is
placed near the top of the
tube. The length of the air
column, L, is adjusted by
moving the tube vertically.
The sound waves generated by the fork are re-
inforced when the length of the air column corre-
sponds to one of the resonant frequencies of the
tube. The largest value for L for which a peak occurs
in sound intensity is 9.00 cm. (Use 345 m/s as the
speed of sound in air.)

a. What is the frequency of the tuning fork?
b. What is the value of L for the next two 

harmonics?

44. When two tuning forks of 132 Hz and 137 Hz,
respectively, are sounded simultaneously, how many
beats per second are heard?

45. The range of human hearing extends from approxi-
mately 20 Hz to 20 000 Hz. Find the wavelengths of
these extremes when the speed of sound in air is
equal to 343 m/s.

46. A dolphin in 25°C sea water emits a sound directed
toward the bottom of the ocean 150 m below. How
much time passes before it hears an echo? (See Table
13-1 on page 482 for the speed of the sound.)

47. An open organ pipe is 2.46 m long, and the speed of
the air in the pipe is 345 m/s.

a. What is the fundamental frequency of this pipe?
b. How many harmonics are possible in the nor-

mal hearing range, 20 Hz to 20 000 Hz?

48. The greatest value ever achieved for the speed of
sound in air is about 1.0 × 104 m/s, and the highest
frequency ever produced is about 2.0 × 1010 Hz.
Find the wavelength of this wave.

49. If you blow across the open end of a soda bottle
and produce a tone of 250 Hz, what will be the fre-
quency of the next harmonic heard if you blow
much harder?

f  = ?

L

Figure 13-24
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53. Some studies indicate that the upper frequency
limit of hearing is determined by the diameter of
the eardrum. The wavelength of the sound wave
and the diameter of the eardrum are approximately
equal at this upper limit. If this is so, what is the
diameter of the eardrum of a person capable of
hearing 2.0 × 104 Hz? Assume 378 m/s is the speed
of sound in the ear.

54. The decibel level of the noise from a jet aircraft is
130 dB when measured 20.0 m from the aircraft.

a. How much sound power does the jet aircraft
emit?

b. How much sound power would strike the
eardrum of an airport worker 20.0 m from the
aircraft? (Use the diameter found in item 53 to
calculate the area of the eardrum.)

Chapter 13510

Performance assessment
1. A new airport is being built 750 m from your

school. The noise level 50 m from planes that will

land at the airport is 130 dB. In open spaces, such as

the fields between the school and the airport, the

level decreases by 20 dB each time the distance

increases tenfold. Work in a cooperative group to

research the options for keeping the noise level tol-

erable at the school. How far away would the school

have to be moved to make the sound manageable?

Research the cost of land near your school. What

options are available for soundproofing the school’s

buildings? How expensive are these options? Have

each member in the group present the advantages

and disadvantages of such options.

2. Use soft-drink bottles and water to make a musical

instrument. Adjust the amount of water in different

bottles to create musical notes. Play them as percus-

sion instruments (by tapping the bottles) or as wind

instruments (by blowing over the mouths of indi-

vidual bottles). What media are vibrating in each

case? What affects the fundamental frequency? Use

a microphone and an oscilloscope to analyze your

performance and to demonstrate the effects of tun-

ing your instrument.

Portfolio projects
3. Interview members of the medical profession to

learn about human hearing. What are some types of

hearing disabilities? How are hearing disabilities

related to disease, age, and occupational or environ-

mental hazards? What procedures and instruments

are used to test hearing? How do hearing aids help?

What are the limitations of hearing aids? Present

your findings to the class.

4. Do research on the types of architectural acoustics

that would affect a restaurant. What are some of

the acoustics problems in places where many peo-

ple gather? How do odd-shaped ceilings, decorative

panels, draperies, and glass windows affect echo

and noise? Find the shortest wavelengths of sounds

that should be absorbed, considering that conver-

sation sounds range from 500 to 5000 Hz. Prepare

a plan or a model of your school cafeteria showing

what approaches you would use to keep the level of

noise to a minimum.

Alternative Assessment

50. A rock group is playing in a club. Sound emerging
outdoors from an open door spreads uniformly in
all directions. If the decibel level is 70 dB at a dis-
tance of 1.0 m from the door, at what distance is the
music just barely audible to a person with a normal
threshold of hearing? Disregard absorption.

51. The fundamental frequency of an open organ pipe
corresponds to the note middle C (f = 261.6 Hz on
the chromatic musical scale). The third harmonic
(f3) of another organ pipe that is closed at one end
has the same frequency. Compare the lengths of
these two pipes.

52. A typical decibel level for a buzzing mosquito is 40 dB,
and normal conversation is approximately 50 dB.
How many buzzing mosquitoes will produce a sound
intensity equal to that of normal conversation?
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Execute “Chap13” on the p menu, and press

e to begin the program. Enter the magnitudes of

the speed of sound and the speed of the source

(shown below), pressing e after each value.

The calculator will provide graphs of the actual

frequency versus the apparent frequencies. (If the

graphs are not visible, press w and change the

settings for the graph window, then press g.)

Press ◊, and use the arrow keys to trace along

the curves. The x-value corresponds to the source’s

actual frequency in hertz. The y-value in the upper

graph corresponds to the frequency of the source as

heard by the observer as the source approaches the

observer. The y-value in the lower graph corresponds

to the frequency of the source as heard by the observ-

er as the source moves away from the observer. Use

the ¨ and ∂ keys to toggle between the two graphs.

Determine the apparent frequencies in the fol-

lowing cases (b–e) if the speed of sound is 346 m/s:

b. a car horn tuned to middle C (264 Hz) 

passing the listener at a speed of 25 m/s

c. a car horn tuned to G (392 Hz) passing the 

listener at a speed of 25 m/s

d. a trumpet player playing middle C (264 Hz)

on a parade float that passes the listener at a

speed of 5.0 m/s

e. a trumpet player playing G (392 Hz) on a

parade float that passes the listener at a speed

of 5.0 m/s

f. Two police cars are in pursuit of a criminal. Car

54 drives past you at 25 m/s, then car 42 passes

you at 30 m/s. Both cars have the same siren set

to play a constant frequency. Which car’s siren

will sound the most different when moving

toward you versus moving away from you?

Press @ q to stop graphing. Press e to

input new values or ı to end the program.

Graphing calculators
Refer to Appendix B for instructions on download-

ing programs for your calculator. The program

“Chap13” allows you to analyze a graph of the fre-

quency of a sound versus its apparent frequency to a

stationary observer.

As you learned earlier in this chapter, a Doppler

effect is experienced whenever there is relative

motion between a source of sound and an observer.

The frequencies heard by the observer can be

described by the following two equations in which

f � represents the apparent frequency and f repre-

sents the actual frequency.

f � = f �vsoun

v

d

so

−
un

v
d

source
�

f � = f �vsoun

v

d

so

+
un

v
d

source
�

The program “Chap13” stored on your graphing

calculator makes use of the Doppler effect equa-

tions. Once the “Chap13” program is executed, your

calculator will ask for the speed of sound and the

speed of the source.

The graphing calculator will use the following

equations to create two graphs: the apparent fre-

quency (Y1) versus the actual frequency (X) as the

source approaches the observer, and the apparent

frequency (Y2) versus the actual frequency (X) as

the source moves away from the observer. The rela-

tionships in these equations are the same as those in

the Doppler effect equations shown above.

Y1 = SX/(S−V)

Y2 = SX/(S+V)

a. Which frequency is higher: Y1 or Y2?
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SPEED OF SOUND

Sound waves can travel through solids, liquids, and gases. The speed of sound

in a medium depends on the density of the particles that make up the medi-

um. The speed also depends on the temperature, especially in a gas like air. In

air, sound travels faster at higher temperatures and slower at lower tempera-

tures. In this experiment, you will measure the speed of sound in air using one

of the methods described below.

• CBL and sensors The speed of sound will be determined using a CBL

microphone placed directly above the opening of a large tube. A short,

sharp noise will be recorded by the microphone at the top of the tube and

again after the sound travels down the tube and reflects back to the micro-

phone. You can use the time between recordings and distance traveled by

the sound to determine the speed of sound in air.

• Resonance apparatus The speed of sound will be determined using a

tuning fork to produce resonance in a closed tube. The wavelength of the

sound may be calculated from the resonant length of the tube, and the

speed of the sound can be calculated from the equation v = fl, where v is

the speed of sound, f is the frequency of the sound produced by the tuning

fork, and l is the wavelength of the sound.

PREPARATION

1. Determine whether you will be using the CBL and sensors procedure or

the resonance apparatus procedure. Read the entire lab for the appropri-

ate procedure, and plan what steps you will take.

Resonance apparatus procedure begins on page 514.

CHAPTER 13
Laboratory Exercise

OBJECTIVES

•Find the speed of sound
in air.

MATERIALS LIST

✔ Check list for appropriate 
procedure.

PROCEDURE

CBL AND SENSORS

✔ cardboard tube
✔ CBL
✔ CBL microphone
✔ graphing calculator with link

cable
✔ masking tape
✔ meterstick
✔ support stand with clamp
✔ CBL temperature sensor

RESONANCE APPARATUS

✔ 4 tuning forks of different 
frequencies

✔ Erlenmeyer flask, 1000 mL
✔ resonance apparatus with

clamp
✔ thermometer
✔ tuning-fork hammer
✔ water

SAFETY

• Never put broken glass or ceramics in a regular waste container. Use a
dustpan, brush, and heavy gloves to carefully pick up broken pieces and
dispose of them in a container specifically provided for this purpose.

• If a thermometer breaks, notify the teacher immediately.

Copyright © by Holt, Rinehart and Winston. All rights reserved.
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Finding the speed of sound

2. Prepare a data table in your lab notebook with four

columns and five rows. In the first row, label the

first through fourth columns Trial, Distance from

microphone to bottom of tube (m), Temperature

(°C), and Time interval (s). In the first column,

label the second through fifth rows 1, 2, 3, and 4.

3. Set up the temperature probe, CBL microphone,

ring stand, tube, CBL, and calculator, as shown in

Figure 13-25. Tape or clamp the tube securely in

place. Clamp the CBL microphone to the edge of

the table or to a ring stand so that the microphone

points down and is directly above the open end of

the tube. Connect the CBL to the graphing calcula-

tor. Connect the CBL microphone to the CH1 port

and the temperature probe to the CH2 port on the

CBL unit. Hang the temperature probe inside the

tube to measure the air temperature.

4. Turn on the CBL unit and the calculator. Start the

program PHYSICS on the calculator.

a. Select the SET UP PROBES option from the

MAIN MENU. Enter 1 for the number of

probes. Select the TEMPERATURE probe.

Enter 2 for the channel number.

b. Select the MONITOR INPUT option from the

MAIN MENU. Record the temperature read-

ing in your data table. Press “+” to return to the

MAIN MENU.

5. From the MAIN MENU, select the SET UP

PROBES option. Enter 1 for the number of probes.

Select the MICROPHONE. Your teacher will tell

you what type of microphone you are using. Select

the appropriate description from the list on the cal-

culator. From the COLLECTION MODE menu,

select WAVEFORM/TRIGR. Press ENTER on the

graphing calculator.

6. Make a loud, short noise—such as a snap of the fin-

gers—directly above the tube. This will trigger the

CBL to collect the sound data.

7. When the CBL unit displays DONE, press ENTER

on the calculator.

8. Use the metric ruler to measure the length from the

bottom of the CBL microphone to the bottom of

the tube. Record this length to the nearest millime-

ter in the data table.

9. Look at the graph on the graphing calculator,

which shows the sound plotted against time in sec-

onds. There should be two peaks on the graph, one

near the beginning and one a little later. The first

peak is the sound and the second peak is the echo

of the sound. Use the arrow keys to trace the graph.

PROCEDURE

CBL AND SENSORS

Figure 13-25
Step 6: The CBL will begin collecting sound data as soon as
you make a sound, so work quietly until you are ready to begin
the experiment. Remain quiet until the CBL displays DONE.
Background noise may affect your results.
Step 9: On the graph, the first and second peaks may not be
the same height, but they should both be noticeably higher than
the other points on the graph. If the sound was too loud, the
graph will show many high and low points. Repeat with a softer
sound for better results.
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10. Find the difference between the x-values of the two

peaks to find the time interval between them. Record

the time interval in your data table. Sketch the graph

in your lab notebook. Press ENTER on the calculator.

11. Repeat the procedure for several trials. Try different

sounds, such as a soft noise, a loud noise, a high-

pitched sound, or a low-pitched sound. Record all

data in your data table.

12. Clean up your work area. Put equipment away safe-

ly so that it is ready to be used again. Recycle or dis-

pose of used materials as directed by your teacher.

Analysis and Interpretation begins on page 515.

Finding the speed of sound

2. Prepare a data table in your lab notebook with four

columns and five rows. In the first row, label the first

through fourth columns Trial, Length of tube (m), Fre-

quency (Hz), and Temperature (°C). In the first col-

umn, label the second through fifth rows 1, 2, 3, and 4.

3. Set up the resonance apparatus as shown in Figure
13-26.

4. Raise the reservoir so that the top is level with the

top of the tube. Fill the reservoir with water until

the level in the tube is at the 5 cm mark.

5. Measure and record the temperature of the air

inside the tube. Select a tuning fork, and record the

frequency of the fork in the data table.

6. Securely clamp the tuning fork in place as shown in

the figure, with the lower tine about 1 cm above the

end of the tube. Strike the tuning fork sharply, but not

too hard, with the tuning-fork hammer to create a

vibration. A few practice strikes may be helpful to dis-

tinguish the tonal sound of the tuning fork from the

unwanted metallic “ringing” sound that may result

from striking the fork too hard. Do not strike the fork
with anything other than a hard rubber mallet.

7. While the tuning fork is vibrating directly above the

tube, slowly lower the reservoir about 20 cm or until

you locate the position of the reservoir where the res-

onance is loudest. (Note: To locate the exact position

of the resonance, you may need to strike the tuning

fork again while the water level is falling.) Raise the

reservoir to about 2 cm above the approximate level

where you think the resonance is loudest. Strike the

tuning fork with the tuning fork hammer and care-

fully lower the reservoir about 5 cm until you find

the exact position of resonance.

8. Using the scale marked on the tube, record the level

of the water in the tube when the resonance is

loudest. Record this level to the nearest millimeter

in your data table.

9. Repeat the procedure for several trials, using tuning

forks of different frequencies.

10. Clean up your work area. Put equipment away safe-

ly so that it is ready to be used again. Recycle or dis-

pose of used materials as directed by your teacher.

PROCEDURE

RESONANCE APPARATUS

Figure 13-26
Step 7: From the
position of greatest
resonance, move the
reservoir up 2 cm
and down again until
you find the exact
position.
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ANALYSIS AND INTERPRETATION

Calculations and data analysis

1. Organizing data

a. CBL and sensors For each trial, calculate the total distance the

sound traveled by multiplying the distance measured by 2.

b. Resonance apparatus For each trial, calculate the wavelength of

the sound by using the equation for the fundamental wavelength,

l = 4L, where L is the length of the tube.

2. Analyzing data For each trial, find the speed of sound.

a. CBL and sensors Use the values for distance traveled and the time

interval from your data table to find the speed for each trial.

b. Resonance apparatus Use the equation v = fl, where f is the fre-

quency of the tuning fork.

3. Evaluating data Find the accepted value for the speed of sound in air at

room temperature (see page 482, Table 13-1). Find the average of your

results for the speed of sound, and use the average as the experimental value.

a. Compute the absolute error using the following equation:

absolute error = �experimental − accepted�

b. Compute the relative error using the following equation:

relative error =

Conclusions

4. Applying conclusions Based on your results, is the speed of sound in

air at a given temperature the same for all sounds, or do some sounds

move more quickly or more slowly than other sounds? Explain.

5. Applying ideas How could you find the speed of sound in air at differ-

ent temperatures?

Extensions

6. Evaluating methods How could you modify the experiment to find

the length of an open pipe? If there is time and your teacher approves

your plan, carry out the experiment.

7. Research and communications Many musical instruments operate by

resonating air in open or closed tubes. In a pipe organ, for example, both

open and closed tubes are used to create music. Research a pipe instru-

ment, and find out how different notes are produced.

(experimental − accepted)


accepted
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by a food blender or by diesel truck traff ic is about 

85 dB. A jet engine heard from a few meters away is

about 140 dB.

Have you ever noticed the “headphones” worn by

ground crew at an airport or by workers using chain saws

or jackhammers? In most cases, these are ear protectors

worn to prevent the hearing loss brought on by damage

to the inner ear.

Whose noise annoys?
The second kind of noise pollution is more controversial

because it involves noises that are

considered annoyances. No one knows

for sure how to measure levels of

annoyance, but sometimes annoying

noise becomes intolerable. Lack of

Suppose you are spending some quiet time alone–

reading, studying, or just daydreaming. Suddenly your

peaceful mood is shattered by the sound of a lawn

mower, loud music, or an airplane taking off. If this has

happened to you, then you have experienced noise

pollution.

Noise is defined as any loud, discordant, or

disagreeable sound, so classifying sounds as noise is

often a matter of personal opinion. When you are at a

party, you might enjoy listening to loud music, but when

you are at home trying to sleep, you may f ind the same

music very disturbing.

There are two kinds of noise pollution, both of which

can result in long-term hearing problems and even

physical damage to the ear. Chapter 13 explains how we

receive and interpret sound.

How can noise damage hearing?
The small bones and hairlike cells of the inner ear are

delicate and very sensitive to the compression waves we

interpret as sounds. The f irst type of noise pollution

involves noises that are so loud they endanger the

sensitive parts of

the ear. Prolonged

exposure to sounds

of about 85 dB can begin to damage

hearing irreversibly. Certain sounds above 120 dB

can cause immediate damage. The sound level produced
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rid of noisy campers, and limit 

or eliminate certain noisy 

vehicles. Some parks have 

drastically limited the 

number of people who can 

be in a park at any one time.

Other annoyances
Besides airports, people currently complain most about

noise pollution from nearby construction sites, jet skis,

loud stereos in homes and cars, all-terrain vehicles,

snowmobiles, and power lawn equipment, such as

mowers and leaf blowers. Many people want to control

such noise by passing laws to limit the use of this

equipment to certain times of the day or by requiring

that sound-muff ling devices be used.

Opponents to these measures argue that much of this

activity takes place on private property and that, in the

case of building sites and industries, noise limitation

would increase costs. Some public off icials would like to

control annoying noise but point out that laws to do so

fall under the category of nuisance laws, which are

notoriously diff icult to enforce.

Noise pollution is also a problem in areas where 

few or no people live. Unwanted noise in wilderness 

areas can affect animal behavior and reproduction.

Sometimes animals are simply scared away from 

their habitats. For this reason, the government 

has taken action in some national parks 

to reduce sightseeing f lights, get 

Researching the Issue

1. Obtain a sound-level meter, and measure the

noise level at places where you and your friends 

might be during an average week. Also make some

measurements at locations where sound is 

annoyingly loud. Be sure to hold the meter at head

level and read the meter for 30 seconds to obtain an

average. Present your findings to the class in a 

graphic display.

2. Measure the sound levels at increasing distances

from two sources of steady, loud noise. Record all of

your locations and measurements. Graph your data,

and write an interpretation describing how sound

level varies with distance from the source.

3. Is there a source of noise in your community

that most people recognize to be a problem? If so,

f ind out what causes the noise and what people 

want to do to relieve the problem. Hold a panel

discussion to analyze the opinions of each side, and

propose your own solution.

sleep due to noise causes people to have slow reaction

times and poor judgment, which can result in mistakes at

work or school and accidents on the job or on the road.

Scientists have found that continuous, irritating noise

often produces high blood pressure, which leads to other

health problems.

A major debate involves noise made by aircraft.

Airport traffic in the United States nearly doubled from

1980 to 1990 and continues to grow at a rapid pace.

People who live near airports once found aircraft noise

an occasional annoyance, but because of increased traffic

and runways added to accommodate growth, they now

suffer sleep disruptions and other health effects.

Many people have organized groups to oppose airport

expansion. Their primary concerns are the increase in

noise and the decrease in property values associated with

airport expansion.

But, city governments argue that an airport benefits

the entire community both socially and economically and

that airports must expand to meet the needs of increased

populations. Officials have also argued that people knew

they were taking chances by building or buying near an

airport and that the community cannot compensate for

their losses. Airlines contend that attempts to reduce 

noise by using less power during takeoffs or by veering

away from populated areas can pose a serious threat to

passenger safety.
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