STAAR Released Test Questions
-
Released questions from previous years have been organized here, by TEKS number. Click on "Vid" to see how to answer the given question.
B.4(A)
Compare and contrast prokaryotic and eukaryotic cells
Q1 B.4(B)
Investigate and explain cellular processes, including homeostasis, energy conversions, transport of molecules, and synthesis of new molecules
B.4(C)
Compare the structures of viruses to cells, describe viral reproduction, and describe the role of viruses in causing diseases such as human immunodeficiency virus (HIV) and influenza
B.5(A)
Describe the stages of the cell cycle, including deoxyribonucleic acid (DNA) replication and mitosis, and the importance of the cell cycle to the growth of organisms
B.5(B)
Examine specialized cells, including roots, stems, and leaves of plants; and animal cells such as blood, muscle, and epithelium
B.5(C)
Describe the roles of DNA, ribonucleic acid (RNA), and environmental factors in cell differentiation
B.5(D)
Recognize that disruptions of the cell cycle lead to diseases such as cancer
B.6(A)
Identify components of DNA, and describe how information for specifying the traits of an organism is carried in the DNA
B.6(B)
Recognize that components that make up the genetic code are common to all organisms
B.6(C)
Explain the purpose and process of transcription and translation using models of DNA and RNA
B.6(D)
Recognize that gene expression is a regulated process
B.6(E)
Identify and illustrate changes in DNA and evaluate the significance of these changes
B.6(F)
Predict possible outcomes of various genetic combinations such as monohybrid crosses, dihybrid crosses and non-Mendelian inheritance
B.6(G)
Recognize the significance of meiosis to sexual reproduction
B.6(H)
Describe how techniques such as DNA fingerprinting, genetic modifications, and chromosomal analysis are used to study the genomes of organisms
B.7(A)
Analyze and evaluate how evidence of common ancestry among groups is provided by the fossil record, biogeography, and homologies, including anatomical, molecular, and developmental
B.7(B)
Analyze and evaluate scientific explanations concerning any data of sudden appearance, stasis, and sequential nature of groups in the fossil record
B.7(C)
Analyze and evaluate how natural selection produces change in populations, not individuals
B.7(D)
Analyze and evaluate how the elements of natural selection, including inherited variation, the potential of a population to produce more offspring than can survive, and a finite supply of environmental resources, result in differential reproductive success
B.7(E)
Analyze and evaluate the relationship of natural selection to adaptation and to the development of diversity in and among species
B.7(F)
Analyze and evaluate the effects of other evolutionary mechanisms, including genetic drift, gene flow, mutation, and recombination
B.7(G)
Analyze and evaluate scientific explanations concerning the complexity of the cell
B.8(A)
Define taxonomy and recognize the importance of a standardized taxonomic system to the scientific community
B.8(B)
Categorize organisms using a hierarchical classification system based on similarities and differences shared among groups
Q3 B.8(C)
Compare characteristics of taxonomic groups, including archaea, bacteria, protists, fungi, plants, and animals
B.9(A)
Compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids
B.9(B)
Compare the reactants and products of photosynthesis and cellular respiration in terms of energy and matter
B.9(C)
Identify and investigate the role of enzymes
B.9(D)
Analyze and evaluate the evidence regarding formation of simple organic molecules and their organization into long complex molecules having information such as the DNA molecule for self-replicating life
No questions
B.10(A)
Describe the interactions that occur among systems that perform the functions of regulation, nutrient absorption, reproduction, and defense from injury or illness in animals
B.10(B)
Describe the interactions that occur among systems that perform the functions of transport, reproduction, and response in plants
B.10(C)
Analyze the levels of organization in biological systems and relate the levels to each other and to the whole system
B.11(A)
Describe the role of internal feedback mechanisms in the maintenance of homeostasis
B.11(B)
Investigate and analyze how organisms, populations, and communities respond to external factors
B.11(C)
Summarize the role of microorganisms in both maintaining and disrupting the health of both organisms and ecosystems
B.11(D)
Describe how events and processes that occur during ecological succession can change populations and species diversity
B.12(A)
Interpret relationships, including predation, parasitism, commensalism, mutualism, and competition among organisms
B.12(B)
Compare variations and adaptations of organisms in different ecosystems
B.12(C)
Analyze the flow of matter and energy through trophic levels using various models, including food chains, food webs, and ecological pyramids
B.12(D)
Recognize that long-term survival of species is dependent on changing resource bases that are limited
B.12(E)
Describe the flow of matter through the carbon and nitrogen cycles and explain the consequences of disrupting these cycles
B.12(F)
Describe how environmental change can impact ecosystem stability