Expansion Bus

Chapter 6
Overview

• In this chapter, you will learn to

 – Identify the structure and function of the expansion bus

 – Explain classic system resources

 – Identify the modern expansion bus slots

 – Install expansion cards properly

 – Troubleshoot expansion card problems
Historical/Conceptual

Structure and Function of the Expansion Bus
Connections

• Expansion slots connect to both the Northbridge and Southbridge
Two Crystals—Two Speeds

- All ICs are regulated by a **clock crystal**
- **System crystal** controls CPU, RAM, and chipset on the frontside bus
- Expansion bus crystal controls boards on expansion bus

1. The system crystal pushes the CPU, RAM, and chipset. It’s fast!
2. The expansion crystal pushes the expansion cards at a slower, standardized speed,
PC Bus (8-bit ISA)

- IBM XT had 8088 processor, 8-bit external data bus, and speed of 4.77 MHz
- Expansion bus ran at about 7 MHz (faster than the system bus)
- AKA PC bus, XT bus, or ISA bus
AT Bus (16-bit ISA)

- **AT bus** is a 16-bit bus running at 8.33 MHz
- Added 8 bits to the end of the PC bus
- **PC/XT** AKA 8-bit ISA
- **PC/AT** AKA 16-bit ISA
Modern Expansion Bus
False Starts—Dead Today

- **Microchannel Architecture (MCA)**
 - MCA had a 32-bit bus to match the 386 CPU’s external data bus with a speed of 12 MHz

- **Extended ISA (EISA)**
 - (EE-sah) was a 32-bit self-configuring expansion bus that was cheaper than MCA

- **Video Electronics Standards Association (VESA)**
 - Designed to solve the problems of speed and throughput
PCI

- **Peripheral Component Interconnect (PCI)** provides a stronger, faster, and more flexible alternative to other expansion buses

 - The flexible design enables the PCI to coexist with other buses and scale up in speed and throughput

 - PCI devices are self-configuring (now known as plug and play)

 - PCI Special Interest Group (SIG)
 - Defined I/O addresses and IRQs for most devices
 - Used a sharable Interrupt Channel instead of IRQs
PCI

- Fully implements DMA—allowing PCI devices to transfer data among themselves

- Divides its chipset duties between two chips
 - Northbridge (or PCI controller) performs the classic functions and controls the PCI bus
 - Southbridge (PCI to ISA bridge or just PCI bridge) acts as an intermediary between the PCI bus and the other bus
AGP

- Accelerated Graphics Port (AGP)
- PCI slot dedicated to video only
- Brown-colored connector found on modern motherboards
- More in Chapter 17
Other PCI

- **PCI-X**
 - Answers the need for speed

- **Mini-PCI**
 - Designed to use low power and lie flat
 - Ideal in laptop applications

- **PCI Express**
 - Lanes of 2 Gbps
 - Devices can use multiple lanes
System Resources
System Resources

• Expansion cards and the CPU need some way to communicate

• **System resources** help to define how communication occurs
 - I/O addresses
 - IRQs
 - DMA channels
 - Memory addresses

• Rarely need to adjust today
 - Plug and play takes care of most of the work
I/O Addresses

- All devices must have an I/O address
- Most devices use more than one I/O address (or a range of I/O addresses)
- Devices must use different I/O addresses
- The I/O memory wire signals that a device is being addressed
I/O Address Terminology

- When talking about I/O addresses, drop the leading zeroes (1F0...not 01F0)

- Every device gets a range of addresses

- The first I/O address is base I/O address

- Put an “h” on the end of the value to specify hex (1F0h)

- I/O addresses provide two-way communication (CPU to/from device)
Hexadecimal Compared to Binary

- Representing ten in binary and hex
 - Binary 1 0 1 0 (1 eight and 1 two)
 - Hexadecimal Ah (pronounced “A hex”)

Hexadecimal Table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1000</td>
<td>1001</td>
<td>1010</td>
<td>1011</td>
<td>1100</td>
<td>1101</td>
<td>1110</td>
<td>1111</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1001</td>
<td>1011</td>
<td>1100</td>
<td>1101</td>
<td>1110</td>
<td>1111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1010</td>
<td>1010</td>
<td>1011</td>
<td>1011</td>
<td>1100</td>
<td>1101</td>
<td>1110</td>
<td>1111</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1011</td>
<td>1011</td>
<td>1011</td>
<td>1011</td>
<td>1100</td>
<td>1101</td>
<td>1110</td>
<td>1111</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1100</td>
<td>1100</td>
<td>1101</td>
<td>1101</td>
<td>1110</td>
<td>1110</td>
<td>1111</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1101</td>
<td>1101</td>
<td>1101</td>
<td>1101</td>
<td>1110</td>
<td>1110</td>
<td>1111</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1110</td>
<td>1110</td>
<td>1110</td>
<td>1110</td>
<td>1110</td>
<td>1110</td>
<td>1111</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1111</td>
<td>1111</td>
<td>1111</td>
<td>1111</td>
<td>1111</td>
<td>1111</td>
<td>1111</td>
<td>1111</td>
</tr>
</tbody>
</table>
Hexadecimal Compared to Binary

- **Counting to 10**
 - Decimal 0, 1, 2 ... 9, 10
 - Binary 0, 1, 10
 - Hexadecimal 0, 1, 2... E, F, 10

<table>
<thead>
<tr>
<th>How do you get to 10?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 10</td>
<td>Decimal</td>
</tr>
<tr>
<td>0 1 10</td>
<td>Binary</td>
</tr>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 A B C D E F 10</td>
<td>Hexadecimal</td>
</tr>
</tbody>
</table>
Interrupts

• The CPU can initiate a conversation with any device at will

• Any device may talk to the CPU, but how does a device get the CPU’s attention?

• Devices use the interruption mechanism to gain the attention of the CPU by placing a voltage on a special wire called the INT (interrupt) wire
Interrupts

• Multiple devices, but only one INT

• Devices use IRQs (interrupt requests)
 – Separate IRQ for each device
 – I/O Advanced Programmable Interrupt Controller (IOAPIC) manages IRQs

• IRQs numbered 0 through 23
 – Used to be only 16

• Open IRQs are unassigned
 – Plug and Play assigns IRQs to new devices as needed
COM and LPT Ports

- Communication & Line Printer (LPT) ports
- IBM created standard preset combinations of IRQs and I/O addresses
- The **COM port** and **LPT port** preset combinations:

<table>
<thead>
<tr>
<th></th>
<th>03F8</th>
<th>02F8</th>
<th>03E8</th>
<th>02E8</th>
<th>0378</th>
<th>0278</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM1</td>
<td>IRQ4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM2</td>
<td>IRQ3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM3</td>
<td>IRQ4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM4</td>
<td>IRQ3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPT1</td>
<td>IRQ7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPT2</td>
<td>IRQ5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Direct Memory Access (DMA)

- **Direct memory access (DMA)** is the process of accessing memory without using the CPU
- It enables the system to run background applications without interrupting the CPU

![Diagram showing the process of Direct Memory Access (DMA)]
Bus Mastering

- **Bus mastering** devices use the DMA without accessing the 8237 or CPU

- Circuitry allows them to watch for other devices accessing the external data bus
 - No two devices can use the external data bus at the same time

- Extremely popular in hard drives
 - All EIDE hard drives take advantage of bus mastering

- Floppy drives still use the old DMA
Memory Addresses

• Some (not all) expansion cards need memory addresses

• Two reasons for this:
 1. May have onboard RAM that the CPU needs to address
 2. A few cards have onboard ROM (adapter, option type; see Chapter 5)

• RAM or ROM may steal memory addresses from main system RAM

• Memory addressing is fully automatic
Installing Expansion Cards
Steps to Installing Expansion Cards

1. Knowledge

2. Physical installation

3. Device drivers

4. Verify
Step 1: Knowledge

1. Learn about the device by reading the documentation

- Do you have device drivers for your operating system (Windows, Linux, etc.)
- Does the device work with your operating system?
- Check the Windows Marketplace
 - http://testedproducts.windowsmarketplace.com
 - Devices on this list have been certified by Microsoft to work with Windows
2. Install the card

- Hold the card on its edges—don’t touch connectors or the components on the card
- Insert at the proper angle
- Use the connection screw, which helps to ground the card and prevent card creep
- Use proper ESD procedures
Step 3: Device Drivers

• All devices require BIOS, which for expansion cards is almost always a device driver
 − Devices will come with device drivers on the installation CD
 − It is recommended that you get the latest drivers from the manufacturer’s Web site

• Which one first?
 − Driver or device? Usually device first
 − If USB or FireWire, driver first
Removing the Driver

- Right-click on the device in Device Manager and choose Update Driver...
 - Choose Uninstall to remove the current driver

- May also be able to uninstall via Add/Remove Programs
Unsigned Drivers

- Manufacturers submit drivers and devices to Microsoft for testing
 - Once tested and verified, they are digitally signed
 - Unsigned drivers give a warning

- Drivers that haven’t been tested may still work fine despite the scary message
Installing the New Driver

- Use the CD that came with the device
 - May install extra unwanted programs

- Use the Add Hardware Wizard in Control Panel
Driver Rollback

• Right-click the device in Device Manager and choose Properties, then the Driver tab

• If you installed the wrong driver you can roll back to the previous driver
Step 4: Verify

- Check the device properties in Device Manager to verify it is working properly.
Troubleshooting Expansion Cards
Device Manager

• Check for the device in Device Manager

 – Right-click My Computer | Properties | Hardware tab | Device Manager

 – If the device does not show up in Device Manager

 • Run the Add/Remove Hardware Wizard in Control Panel

 • If it still doesn’t show up, the device is damaged or is a legacy device whose system resources are not configured properly
Device Manager Symbols

- **Black ! on a yellow circle**
 - Device is missing, Windows doesn’t recognize it, or a device driver problem
 - Device may still work

- **Red X**
 - Disabled device—enable it
 - Damaged device—double-check work
 - Device will not work

- **Blue I on a white background**
 - System resources were configured manually
 - Only seen on non-ACPI systems
 - Information only—device will work
Device Manager

- Device Manager allows you to see what resources are being used by your devices
 - Right-click My Computer | Properties | Hardware tab | Device Manager button