Unit 1 - Radian and Degree Measure – Classwork

Definitions to know:

Trigonometry – triangle measurement	Angle: rotating a ray about its endpoint	
Initial side, terminal side - starting and ending Position of the ray	Vertex – endpoint of the ray	
Standard position – origin if the vertex, initial side is the positive <i>x</i> -axis	Positive, negative angles – positive is counterclockwise rotation, negative axis clockwise rotation	
Co-terminal angles – angles having the same initial and terminal sides		

Measurement of angles:

Degrees: 360 degrees make up one circle.

Radians: one radian is the central angle formed by laying the radius of the circle onto the circumference. There are 2π radians in one circle.

Revolutions: a full rotation of a circle.

Conversion formula for angles: $360^\circ = 2\pi$ radians = 1 revolution

Example 1) Convert the following angles to the other two measurements

#	Degrees	Radians	Revolutions
a.	180°	π	$\frac{1}{2}$
b.	30°	$\frac{\pi}{6}$	$\frac{1}{12}$
c.	90°	$\frac{\pi}{2}$	$\boxed{\frac{1}{4}}$
d.	135°	$\frac{3\pi}{4}$	$\frac{3}{8}$
e.	45°	$\frac{\pi}{4}$	$\frac{1}{8}$
f.	240°	$\frac{4\pi}{3}$	$\frac{2}{3}$
g.	225°	$\frac{5\pi}{4}$	$\frac{5}{8}$
h.	300°	$\frac{5\pi}{3}$	$\frac{5}{6}$
i.	264°	$\frac{22\pi}{15}$	$\frac{11}{15}$
j.	$\frac{180}{\pi}$ °	1	$\frac{1}{2\pi}$
k.	360π°	$2\pi^2$	π

Conversion of angles expressed in degrees, minutes, and seconds to decimal degrees:

Example: Express 37°12′24″ to decimal degrees:
$$37 + \frac{12}{60} + \frac{24}{3600}$$

Example: Express 28.923° in degrees, minutes, seconds:

.923(60) = 55.38 .38(6) = 22.8

Example 2) Convert from degrees, minutes, and seconds to decimal degrees or vice versa. (3 decimal places)

#	Degrees, Minutes, Seconds	Decimal Degrees
a.	23°30′	23.5°
b.	141°25′45″	14.429°
c.	12°15′	12.25°
d.	39°25′34″	39.426°
e.	59°59′59″	60°
f.	127°0′4″	127.001°

Finding the arc length of a circle:

We know that the circumference of a circle is given by $C = 2\pi r$ where *r* is the radius of the circle: This formula can also be used to find the length of an arc intercepted by some angle θ .

Arc length formula: $s = r\theta$ where *r* is measured in linear units, θ is measured in radians, and *s* is measured in linear units

Example 3: Find the arc length of the arc with radius = 4 inches and $\theta = 60^{\circ}$

$$s = 4 \operatorname{in}(60^\circ) \left(\frac{2\pi}{360^\circ}\right) = 4.189 \operatorname{in}.$$

Note: since the angle is measured in radians, it technically has no units so *s* is measured in linear units. Example 4: If the arc length is 6 inches and the radius is 2 inches, find the central angle in degrees

$\theta = \frac{s}{s}$	<u>6 in</u>	$= 3\left(\frac{360^{\circ}}{2}\right)$	=171.887°
r	2 in	-	-171.007

Example 5: If the arc length is 2 meters and the central angle is 125°, find the radius of the circle.

$$r = \frac{s}{\theta} = \frac{2 \text{ m}}{125^{\circ}} \left(\frac{360^{\circ}}{2\pi}\right) = 0.917 \text{ meters}$$

Example 6: Assuming the earth. is a sphere of radius 4,000 miles. Miami, Florida is at latitude $25^{\circ}47'9''N$ while Erie, Pennsylvania is at $42^{\circ}7'15''N$ and the cities are on the same meridian (one city lies due north of each other). Find the distance between the cities.

$$s = 4000 \text{ m}(16.335^\circ) \left(\frac{2\pi}{360^\circ}\right) = 1140.4 \text{ miles}$$

Imagine an object traveling along a circular arc. The element of time is now added to the equation. In order to do problems in such situations, we need to identify variables that can express certain information.

Important variables for problems in which an object is moving along a circular arc

Variable	Name	Given in	Use in formulas	Sample measures
r	Radius	Linear units	linear units	4 inches, 1.5 feet
			radian	
θ (theta)	Angle	Degrees, radians, revs	Radians	$25^{\circ}, 1.5\pi^{R}, .75$ revs
S	Arc length	Linear units	Linear units	2.3 ft, 5 cm
t	Time	Time units	Time units	2 sec, 2.5 hrs
v	Linear velocity	linear units s	linear units	$5\frac{\text{ft}}{\text{sec}},12mph$
			time	sec,12mpn
ω (omega)	Angular velocity	angle θ	radians	$15 \frac{\text{degrees}}{87}, 87$
		$\frac{1}{\text{time}} = \frac{1}{t}$	time	sec, srpm

Example 7) What variable are you being given $(r, \theta, s, t, v, \omega)$ θ I make a U-turn with my car. t It takes

t It takes 5 minutes to complete the exam

 \overrightarrow{r} The spoke of a wheel is 58 inches

s A circular track measures 400 feet

 ω Around the world in 80 days

 \overline{v} The space shuttle travels at 3,094 miles per hour

Methods for transforming one variable into another

You may multiply any variable by the fraction "one". Here are some examples:

 $\frac{12 \text{ inches}}{1 \text{ foot}}$, $\frac{5280 \text{ feet}}{1 \text{ mile}}$, $\frac{2\pi \text{ radians}}{1 \text{ rev}}$, $\frac{1 \text{ minute}}{60 \text{ sec}}$, $\frac{1000 \text{ meters}}{1 \text{ km}}$

rev

Example 8): Convert the following:

a. 15 miles to feet

15 miles $\cdot \frac{5280 \text{ ft}}{1 \text{ mile}} = \boxed{79,200 \text{ ft}}$

c. 10,000 degrees to revolutions

$$10000^{\circ} \cdot \frac{1 \text{ rev}}{360^{\circ}} = \boxed{27.778}$$

e. 55 mph to $\frac{\text{feet}}{\text{sec}}$

b. 1 day to seconds $1 \text{ day} \cdot \frac{24 \text{ hr}}{1 \text{ day}} \cdot \frac{3600 \text{ sec}}{1 \text{ hr}} = \boxed{86,400 \text{ sec}}$ d. $\frac{20 \text{ feet}}{\text{sec}} \text{ to miles per hour}$ $\frac{20 \text{ ft}}{\text{sec}} \cdot \frac{1 \text{ mile}}{5280 \text{ ft}} \cdot \frac{3600 \text{ sec}}{1 \text{ hr}} = \boxed{\frac{13.636 \text{ ft}}{\text{sec}}}$ f. $\frac{1,000,000,000^{\circ}}{\text{year}} \text{ to rpm}$

55 mile	5280 ft	1 hr	88.667 ft	1,000,000,000°	1 rev	1 year	1 day	5.285 rev
hr	1 mile	$\overline{3600 \text{ sec}}$ =	sec	year	<u>360°</u>	365 days	$\overline{24 \cdot 60 \text{ min}} =$	min

The Angular velocity – linear velocity formula: When an object is traveling along an arc, it has both an angular velocity and a linear velocity. The formula that ties these two variables together is:

 $v = \omega r$ or $\omega = \frac{v}{r}$ ω is always measured in $\frac{\text{radians}}{\text{time}}$

Examples 9:

a. A bicycle's wheel has a 30 inch diameter. If the wheel makes 1.5 revolutions per second, find the speed of the bike in mph.

 $v = \omega r = \frac{1.5 \text{ rev}}{\text{sec}} \cdot \frac{15 \text{ in}}{1 \text{ rev}} \cdot \frac{2\pi}{1 \text{ rev}} \cdot \frac{1 \text{ ft}}{12 \text{ in}} \cdot \frac{1 \text{ mile}}{5280 \text{ ft}} \cdot \frac{3600 \text{ sec}}{1 \text{ hr}} = \boxed{8.032 \text{ mph}}$

b. A flight simulator has pilots traveling in a circular path very quickly in order to experience g-forces. If the pilots are traveling at 400 mph and the circular room has a radius of 25 feet, find the number of rotations that simulator makes per second.

$$\omega = \frac{v}{r} = \frac{\frac{400 \text{ miles}}{\text{hr}}}{25 \text{ ft}} = \frac{400 \text{ miles}}{\text{hr}} \cdot \frac{1}{25 \text{ ft}} \cdot \frac{5280 \text{ ft}}{1 \text{ mile}} \cdot \frac{1 \text{ rev}}{2\pi} \cdot \frac{1 \text{ hr}}{3600 \text{ sec}} = \boxed{\frac{3.735 \text{ rev}}{\text{sec}}}$$

c. A large clock has its second hand traveling at 2.5 inches per second. Find the length of the second hand.

$$r = \frac{v}{\omega} = \frac{\frac{2.5 \text{ in}}{\sec}}{\frac{1 \text{ rev}}{1 \text{ min}}} = \frac{2.5 \text{ in}}{\sec} \cdot \frac{1 \text{ min}}{1 \text{ rev}} \cdot \frac{1 \text{ rev}}{2\pi} \cdot \frac{60 \text{ sec}}{1 \text{ min}} = \boxed{23.873 \text{ in}}$$

d. Two gears are connected by a belt. The large gear has a radius of 6 inches while the small gear has a radius of 3 inches. If a point on the small gear travels at 16 rpm, find the angular velocity of the large gear.

$$v = w_{s}r_{s} \qquad v = w_{L}r_{L}$$
$$w_{s}r_{s1} = w_{L}r_{L}$$
$$16(3) = 6w_{L}$$
$$w_{L} = 8 \text{ rpm}$$

Unit 1 - Radian and Degree Measure – Homework 1. Convert the following angles to the other two measurements

	Degrees	Radians	Revolutions
a.	270°	3π	3
		2	$\frac{3}{4}$
b.	45°	π	1
		$\frac{\pi}{4}$	$\frac{1}{8}$
c.	240°	4π	2
		3	$\frac{2}{3}$
d.	330°	1 1π	11
		6	12
e.	135°	3π	3
		4	8
f.	300°	5π	$\frac{\frac{3}{8}}{\frac{5}{6}}$
		3	6
g.	315°	7π	$\left[\frac{7}{8}\right]$
		4	8
h.	30°	$\frac{\pi}{6}$	1
		6	12
i.	312°	26π	$\frac{13}{15}$
		15	15
j.	5°	π	1
		36	72
k.	(900)°	5	5
	$\left(\frac{\pi}{\pi} \right)$		2π
1.	1800°	10π	5

2. Convert from degrees, minutes, and seconds to decimal degrees or vice versa. (3 decimal places)

	Degrees, Minutes, Seconds	Decimal Degrees
a.	158°15′	158.25°
b.	6°21′35″	6.360°
c.	33°16′4″	33.268 [°]
d.	12°54′	12.9°
e.	24°39′	24.65°
f.	154°30′7″	154.502°
g.	27°8′8″	27.136°
h.	99°59′56″	99.999°

3. Of the three variables r, θ , and s, you will be given two of them. Find the third. Angles should be found in the units specified). Specify units for other variables.

	r	heta	S
a.	4 inches	60°	4.189 in
b.	6.5 ft	135°	16.656 ft
c.	2.3 meters	1.5	3.450 meters
d.	23.65 cm	14°25′36″	5.935 cm
e.	16.82 miles	2.504	42.12 miles
f.	125.775 mm	329.856°	724.095 mm
g.	5 inches	275°1′11″	2 feet
h.	11.937 in	$\frac{\pi}{3}$	12.5 inches
i.	7.824 ft	72.5°	9.9 ft

4. Convert the given quantity into the specified units. Show your work in the "Convert to" column.

	Given	Convert to		
a.	4.25 ft	4.25 ft 12 in 51 in		
b.	80 years	80 yrs 365 days 24 hrs 3600 sec 2,522,880,000 sec		
		$\frac{1}{1 \text{ yr}} \frac{1}{1 \text{ day}} \frac{1}{1 \text{ hr}} = \frac{1}{1 \text{ day}}$		
c.	1,500 revolutions	1500 rev <u>360°</u> 540,000°		
		$\frac{1}{1 \text{ rev}}$		
d.	10 km	$\frac{10 \text{ km}}{3280.8 \text{ ft}} = \frac{32,808 \text{ ft}}{32,808 \text{ ft}}$		
		1 km		
e.	2,500π	2500π <u>1 rev</u> <u>1,2500 rev</u>		
		2π		
f.	<u>25 ft</u>	25 ft 1 mile 3600 sec 17.045 mph		
	sec	sec 5280 ft 1 hr		
g.	<u>12 rev</u>	$\frac{12 \text{ rev}}{12 \text{ rev}}$, $\frac{1 \text{ rev}}{100000000000000000000000000000000000$		
	min	min 2π 1 hr 1 day day		
h.	<u>500,000°</u>	$\frac{500000^{\circ}}{100000^{\circ}} \cdot \frac{1 \text{ rev}}{2.00^{\circ}} \cdot \frac{1 \text{ week}}{7 \text{ day}} \cdot \frac{1 \text{ day}}{24 \text{ barrs}} \cdot \frac{1 \text{ hour}}{60 \text{ min}} = .022 \text{ rpm}$		
	week	week 360° 7 days 24 hours 60 min		
i.	60 mph	<u>60 miles</u> <u>5280 ft</u> <u>12 inch</u> <u>1 hour</u> <u>1,056 inch</u>		
		hour 1 miles 1 ft 3600 sec sec		
j.	<u>1 rev</u>	$\frac{1 \text{ rev}}{1 \text{ rev}} \cdot \frac{360^{\circ}}{1 \text{ day}} \cdot \frac{1 \text{ day}}{1 \text{ bour}} = \frac{0.003^{\circ}}{1 \text{ bour}}$		
	80 days	80 days 1 rev 24 hours 60 min min		

5. Find the distances between the cities with the given latitude, assuming that the earth is a sphere of radius 4,000 miles and the cities are on the same meridian.

a.		247'9"N and Omaha, Nebraska 41°15'42"N
		$s = r\theta = \frac{4000 \text{ miles}}{1000 \text{ miles}} \cdot \frac{8.476^{\circ}}{1000 \text{ miles}} \cdot \frac{2\pi}{360^{\circ}} = 591 \text{ miles}$
		360° 360°
b.		alifornia 37°46'39"N and Seattle, Washington 47°36'32"N
		$s = r\theta = \frac{4000 \text{ miles}}{2} \cdot \frac{9.831^{\circ}}{360^{\circ}} \cdot \frac{2\pi}{360^{\circ}} = 686 \text{ miles}$
		360° 360°
c.		mark 55°33'18"N and Rome, Italy 41°49'18"N
		$s = r\theta = \frac{4000 \text{ miles}}{13.733^{\circ}} \cdot \frac{2\pi}{360^{\circ}} = 959 \text{ miles}$
	,	360° 360°
d.		31°47′0′N and Johannesburg, South Africa 26°10′S
		$r = r\theta = \frac{4000 \text{ miles}}{1000 \text{ miles}} \cdot \frac{57.95^{\circ}}{360^{\circ}} \cdot \frac{2\pi}{360^{\circ}} = 4,046 \text{ miles}$
	2	$\frac{3}{360^{\circ}} = 4,040$ miles

- 6. What variable are you being given $(r, \theta, s, t, v, \omega)$?
 - *t* a. It takes 3 minutes to travel between classes.
 - ω b. It takes 5 minutes to walk around the school.
 - θ c. The Space Shuttle made 35 orbits of the earth.
 - *s* d. The circumference of the orange is 6.2 inches.
 - v e. The merry-go-round travels at a constant speed of 4 miles per hour.
 - θ f. A Ferris-Wheel ride consists of 8 revolutions.
 - ω g. That Ferris-Wheel completes the 8 revolutions in 6 minutes.
 - *r* h. A propeller is 45 inches long.
 - *s* i. The park is circular and I walked 2 miles around its circumference.
 - ω j. An ant walking around a tire lying on the ground can only cover 5 degrees every minute.
- 7. Complete the chart, finding the missing information in the measurement requested. Show work.

#	ω	r	v	Units Desired
a.	80 rpm	2 feet	1,005.31 ft	feet/min
b.	15 rev/sec	2.5 feet	160.65 mph	mph
c	55 ⁰ /sec	1.1 mile	3801.327 mph	mph
d.	9.549 rpm	1 foot	60 ft/min	rpm
e.	672.27 rpm	15 inches	60 mph	rpm
f.	$\frac{32.554^{\circ}}{\min}$	2 miles	100 ft/sec	degrees/min
g.	50 rpm	.005 miles	100 mph	miles
h.	100 rev/sec	.08 ft	50 feet/sec	feet
i.	1,000 rev/sec	42.017 in	15,000 mph	inches

- 8. Applications For each problem, draw a picture if necessary and show how you got your answer.
 - a) A clock has a second hand of length 8 inches. How far **in inches** does the tip travel from when it is on the 12 to when it is on the 4.

$s = r\theta = \frac{8 \text{ in}}{2}$	<u>120°</u>	2π	= 16.755 inches
~		360°	

b) The pendulum in the Franklin Institute is 40 feet long. It swing through an angle of 11°23'. Find the length of the arc it swings through **in inches**.

$s = r\theta = \frac{40 \text{ ft}}{100000000000000000000000000000000000$	<u>11.383°</u>	2π	12 in	= 95.365 inches
S = 70 =7		360°	1 ft	= 95.505 menes

c) When the central angle is small and the distance to an object is large, the arc length formula is a good estimator of the height of the object. The angle of elevation of the Empire State Building from 4 miles away is 4°13'. Use the arc length formula to estimate its height in feet.

$s = r\theta =$	4 miles	4.217°	2π	$\frac{5280 \text{ ft}}{100000000000000000000000000000000000$
			<u>360°</u>	$\frac{1}{1}$ mile = 1334.32 ft

d) A car tire with radius 8 inches rotates at 42 rpm. Find the velocity of the car in mph.

$v = \omega r = -\frac{2}{2}$	42 rev	8 inch	2π	1 ft	1 mile	60 min	= 1.999 mph
$v = \omega r = -$	min		1 rev	12 inch	5280 ft	1 hr	= 1.999 mpn

e) The Spinner is an amusement park ride that straps people to the edge of a circle and spins very fast. If riders are traveling at an actual speed of 25 mph, and the radius of the wheel is 15 feet, find the angular velocity of the wheel in **rpm**.

v = v	25 miles	1	5280 ft	1 rev	$\frac{1 \text{ hr}}{2} = 23.343$	2 rnm
w = - = r	hr	15 ft	1 mile	2π	$\frac{1}{60 \text{ min}} = 25.542$, ihii