Roller coasters are scary and fun to ride. Wooden roller coasters shake and rattle as part of the thrill of the ride. Below is the graph of the heights reached by the cars of the wooden roller coaster, Thunderball, over its first 1250 feet of track. The graph displays a function because each input value has one and only one output value. You can see this visually using the **vertical line test**.

Study this graph to determine the domain and range.

The domain gives all values of the **independent variable**: distance along the track in feet. These values are graphed along the horizontal or \(x \)-axis.

The domain can be written in set notation as:

\[
\{ \text{all real values of } x: 0 \leq x \leq 1250 \}
\]

Read this notation as: **the set of all real values of \(x \), between 0 and 1250, inclusive**.

The range gives the values of the **dependent variable**: height above the ground in feet. The values are graphed on the vertical or \(y \)-axis.

The range can be written in set notation as:

\[
\{ \text{all real values of } y: 10 \leq y \leq 110 \}
\]

Read this notation as: **the set of all real values of \(y \), between 10 and 110, inclusive**.

The graph above shows data that are **continuous**. The points in the graph are connected, indicating that domain and range are sets of real numbers with no breaks in between. A graph of **discrete** data consists of individual points that are not connected by a line or curve.
1a. Use set notation to write the domain and range for the graph below. Does this graph appear to represent a function? Justify your answer. Are the data discrete or continuous? Why?

1b. The graph below shows the relationship between t, the length of time of the bath (from the time water starts running through the time the tub is drained) and d, the depth of the water in the bathtub. The graph represents function d (bath water depth). What are the dependent and independent variables? Explain. Use set notation to write the domain and range of function d. Are the data discrete or continuous and why?
CHECK YOUR UNDERSTANDING

Write your answers on notebook paper. Show your work.

1. Give the domain and range for the function graphed below. Explain why this graph represents a function.

![Graph](image)

2. A student calculates how far away a lightning strike is, based on when the thunder is heard. The student makes the table below using $\frac{1}{3}$ km/sec as the average speed of sound under rainy conditions. If the thunder is only heard when the lightning strike is within 15 km of the listener, what are the domain and range for this model? Is this relation a function? How do you know?

<table>
<thead>
<tr>
<th>Time until thunder is heard (sec)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance from lightning strike (km)</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{2}{3}$</td>
<td>1</td>
<td>$1\frac{1}{3}$</td>
<td>$1\frac{2}{3}$</td>
<td>2</td>
</tr>
</tbody>
</table>

3. Give the domain and range of the function $f(x) = -4x - 5$.

4. The graph below shows five points that make up the function h. Give the domain and the range for the function h.

![Graph](image)

5. Jeff walks at an average rate of 125 yards per minute. Mark's house is located 2000 yards from Jeff's house. The graph below shows how far Jeff still needs to walk to reach Mark's house. Give the domain and range for this model. Is this model a function? Explain.

![Graph](image)
CHECK YOUR UNDERSTANDING (continued)

6. Capital letters sketched in the coordinate plane may or may not be functions. Pick one letter that represents a function and two that do not. Use the vertical line test as part of the explanation for your selections.

7. **MATHEMATICAL REFLECTION** Describe at least three different methods for determining if a relation is a function. Which method do you prefer and why?