Coordinate Geometry and Proof

Objective:
Students will prove theorems using coordinate representations of geometric figures.

1. Given: Quadrilateral $ABCD$, with vertices $A (0, 0), B (2, 4), C (7, 4), D (5, 0)$, prove: $ABCD$ is a parallelogram.

2. The given parallelogram $PQRS$ has vertices $P (0, 0), Q (a, 0), R (?, ?)$ and $S (b, c)$.
 a) Determine the coordinates of R.
 b) Find the midpoint of QS.
 c) Find the midpoint of PR.
 d) What do you notice?
 e) Show that if the diagonals are equal in length then the parallelogram is a rectangle.

3. Prove the diagonals of a rhombus are perpendicular.
Coordinate Geometry and Proof

1. Prove the diagonals of a rectangle are equal.

2. Prove the diagonals of an isosceles trapezoid are equal.

3. Show that the triangle with vertices (0, 0), (6, 4), and (4, 7) is a right triangle.

4. Prove that the diagonals of a parallelogram bisect each other.

5. Show that the segments connecting consecutive midpoints of the sides of a quadrilateral form a parallelogram.

6. In the diagram below, suppose that M and N are midpoints of PQ and RQ, respectively, and $PN = RM$.

 a) Find the coordinates of M and N.

 b) Using the distance formula, write and simplify an equation expressing the fact that $PN = RM$.

 c) Use the equation you found in part (b) to express b in terms of a alone. What does this tell you about $\triangle PQR$?