How to take:

Divide your paper sections

Now:

- Heading
- Notes
- Later:
- Study ?s
- Summary

_ T	tle of Notes		Date	
Stu Lev 1,2	dy ?s el & 3	•Tal pres •Un •Sk •Sli •Ab	ke Notes during sentation derline key wo ip a line after e de breviate	g rds ach
•	<u>Summary</u> 3-5 sentences			

Study your notes

- Review your notes.
- Quiz your self with the study questions.
- Review your summaries.

The Scientific Method

20

THINK like a Scientist. RECORD like a Scientist. REFLECT like a Scientist.

The Scientific Method

KNOW I CAN FIN

- "Science" derived from Latin 'to know'
 Way of asking and answering questions about natural phenomena
- Pseudoscience = FALSE Science
 Science does NOT investigate the "supernatural" or study morality, religion, etc.

Laws, Theories & Models

- **Law:** A rule that describes patterns observed in nature. Ex. *Law of Gravity, Laws of Motion*
- Theory: A logical explanation of WHY or HOW things work in nature based on observations and experimentation. Ex. *Atomic Theory, Big Bang Theory* Model: a diagram or 3D representation of an object or process.
- Theories and laws are well-accepted by scientists, but... THEY ARE <u>NOT</u> SET IN STONE!
- They are revised when new information is discovered.

1. Problem/Question

 A problem is a question based upon observations that can be tested through experimentation.

Ex. What is the effect of sunlight on plant growth?

2. Observation/Research

 Observe the world using your senses (sight, sound, taste, touch, smell) and research your problem using the internet or books or journals.

3. Hypothesis/Prediction

Predict a solution to the problem based on your research.

"If...then...because..."

Ex. <u>If sunlight</u> has an effect on plant growth, <u>then</u> plants will grow larger in the sun <u>because</u> it is needed for photosynthesis.

4. Experiment

- Test the hypothesis with a step by step procedure.
- It is clear and detailed so another scientist can replicate your experiment.
- List all materials.

2 types of Variables

Independent Variable (IV)

- What the investigator (YOU) changes
- Known as the
 "Experimental Group"

Ex. **AMOUNT OF LIGHT** is changed for each plant. Dependent Variable (DV)

- Changes due to the IV
- What you measure

Ex. measure the **PLANT GROWTH** (cm)

Control Group & Constants

Control group

The group or sample that is **used as a standard for comparison**.

Ex. The **plant in the dark** is COMPARED to the experimental group (light).

Constants

The factors in the experiment that need to **stay the same** between the experimental group and the control.

Ex. amount of soil, nutrients, water, etc. is CONSTANT for all plants

5. Collect Data

 Information and observations collected during the experiment.

QUALITATIVE

- Descriptions of observations
- "What it LOOKS like"

Ex. Plant C has dried up and lost all of its leaves

QUANTITATIVE

Numerical measurements
"NUMBERS with units"
Ex. 15 cm

Myth Busters in Action, p. 18

Write down examples from the video showing how the Myth Busters followed the steps of the Scientific Method.

- 1. Problem
- 2. Observation/Research
- 3. Hypothesis
- 4. Experiment
- 5. Collect Data
- 6. Analyze Results
- 7. Conclusion
- 8. Report Findings

6. Analyze results

DV

 Display data using a graph to show patterns.
 Ex. Line graph, bar graph, pie chart, etc.

Precision vs. Accuracy

Precision

How close the measurements are to each other.

Accuracy

How close a measurement is to the actual (true) value.

Measure carefully (precisely)
 Collect data in multiple trials
 (repeated tests) to increase accuracy.

7. Conclusion

- The solution to the problem.
- State whether your hypothesis is accepted or rejected.
- Summarize and explain the significance of your results.
- Sources of error, etc.

8. Report Findings

Present your information to others so they can replicate your findings. **Retesting** by other scientists verifies your results.

Think you can name all 8 steps?

- **1. P**roblem
- 2. Observation
- 3. Hypothesis
- 4. Experiment
- 5. Collect Data
- 6. Analyze Results
- 7. Conclusion
- 8. Report findings

Any Questions?

