<table>
<thead>
<tr>
<th>Teacher Name</th>
<th>Mr. Jie</th>
<th>Unit Name</th>
<th>Chemical Bonds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Prep Chemistry</td>
<td>Dates</td>
<td>Oct 31 – Nov 4</td>
</tr>
</tbody>
</table>

Monday

- **Daily Objective:**
 IWBAT explain how ionic compounds are formed.
 IWBAT explain how covalent compounds are formed.

Agenda with Approximate Time Limits:
- Do Now [5 min]
- Direct Instruction on How Cations and Anions are formed [20 min]
- Guided Practice [10 min]
- Exit Ticket [10 min]

Formative Assessment:
Exit ticket

Intervention:
Tutorials and student personal accommodations

Follow-Up/Homework:
Finish classwork

Tuesday

- **Daily Objective:**
 Octet rule
 IWBAT explain that **Cations** are formed by metals losing valence electrons to achieve noble gas configuration.
 IWBAT explain that **Anions** are formed by gaining electrons from other atoms to achieve noble gas configuration.
 IWBAT explain that **Covalent bonds** are formed by sharing electrons between atoms to achieve noble gas configuration.

Agenda with Approximate Time Limits:
- Do Now [5 min]
- Direct Instruction [20 min]
- Guided Practice [10 min]
- Exit Ticket [10 min]

Formative Assessment:
Exit ticket

Intervention:
Tutorials and student personal accommodations

Follow-Up/Homework:
Finish Do now and exit ticket
<table>
<thead>
<tr>
<th>Day</th>
<th>Daily Objective:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday/Thursday</td>
<td>IWBAT explain that Covalent bonds are formed by sharing electrons between atoms to achieve noble gas configuration. IWBAT explain the 7 elements form diatomic molecules by sharing the unpaired electrons.</td>
</tr>
</tbody>
</table>

Agenda with Approximate Time Limits:
- Do Now [25 min]
- Direct instruction and Guided Practice [55 min]
- Exit Ticket [10 min]

Formative Assessment:
Proving questioning.
Exit ticket

Intervention:
Tutorials and student personal accommodations.

Extension
N/A

Follow-Up/Homework:
Finish Classwork

<table>
<thead>
<tr>
<th>Day</th>
<th>Daily Objective:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>IWBAT calculate the number of bonds and unshared electron pairs in a molecule using WASL method.</td>
</tr>
</tbody>
</table>

Agenda with Approximate Time Limits:
- Direct instruction and Guided Practice [45 min]

Formative Assessment:
Class Practice

Intervention:
N/A

Extension:
N/A

Follow-Up/Homework:
N/A
Westside High School Lesson Plan Template

<table>
<thead>
<tr>
<th>Teacher Name</th>
<th>Mr. Jie</th>
<th>Unit Name</th>
<th>Covalent Bonds/VSEPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Prep Chemistry</td>
<td>Dates</td>
<td>Nov 7 – Nov 11</td>
</tr>
</tbody>
</table>

Monday
No School

Tuesday

Daily Objective:
IWBAT draw electron dot diagram to illustrate covalent compounds.

Agenda with Approximate Time Limits:
- Instruction and guided practice [25 minutes]
- Class practice [20 minutes]

Formative Assessment:
Cold Call Practice

Intervention:
Tutorials and student personal accommodations.

Extension:
N/A

Follow-Up/Homework:
N/A

Wednesday/Thursday

Daily Objective:
IWBAT predict molecular structure for molecules with linear, trigonal planar, or tetrahedral electron pair geometries using Valence Shell Electron Pair Repulsion (VSEPR) theory.

Agenda with Approximate Time Limits:
- Lab activity for VSEPR [45 minutes]
- Direct instruction and Guided Practice [30 min]
- Exit Ticket [15 min]

Formative Assessment:
Proving questioning.
Westside High School Lesson Plan Template

<table>
<thead>
<tr>
<th>Exit ticket</th>
<th>Intervention: Tutorials and student personal accommodations.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extension: Vocabulary Practice</td>
</tr>
<tr>
<td></td>
<td>Follow-Up/Homework: Finish Classwork</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Friday</th>
<th>Daily Objective: IWBAT predict molecular structure for molecules with linear, trigonal planar, or tetrahedral electron pair geometries using Valence Shell Electron Pair Repulsion (VSEPR) theory.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Agenda with Approximate Time Limits:</td>
</tr>
<tr>
<td></td>
<td>• Combined practice of Covalent bonds and VSEPR Students will draw Lewis dot diagram for varies molecules and correctly predict the shape of them [45 min]</td>
</tr>
<tr>
<td></td>
<td>Formative Assessment: Cold call, classwork</td>
</tr>
<tr>
<td></td>
<td>Intervention: Tutorials and student personal accommodations.</td>
</tr>
<tr>
<td></td>
<td>Extension: N/A</td>
</tr>
<tr>
<td></td>
<td>Follow-Up/Homework: Finish classwork</td>
</tr>
</tbody>
</table>