Grade 4 Design Challenge Quick Guide: Design a Bridge to Withstand Forces-Cycle 1

Lesson Objective(s): The students will apply concepts of pushes and pulls to the design of a model bridge.

Materials:

For each team of 2 or 3 students

- Design logs
- Rope
- Scales
- Foam Pieces (12" long x ~2.5" wide, 2 per group (1 for constructing prototype, 1 for redesign)
- Dowels, 12" long 3/16" diameter
- String 16" long
- Two piece dowel ~1.5" long to apply the tension to the string
- Bucket and small cup
- Large amount of sand
- Rulers, pencils, scissors
- Lego plates from Lego kits
- 2 parallel planes (e.g., equally thick books, lying flat with 2 inches of overlap on each side)
- Various building materials (teacher discretion) for student bridge designs, if desired (e.g., additional string, scissors, cardboard, etc.)
- Handouts
 - o "Bridges Y-Chart"
 - "Bridges Report"
 - o 21st Century Skills rubric to grade the project

Websites

- http://science.howstuffworks.com/engineering/civil/bridge7.htm
- o http://www.pbs.org/wgbh/nova/tech/build-bridge-p4.html
- http://www.google.com/search?q=bridges&safe=active &es sm=93&source=lnms&tbm= isch&sa=X&ei=aACBU6PQJo2zsASj_YHoCA&ved=0 CAgQ_AUoAQ&biw=1746&bih=890
- https://www.brainpop.com/technology/scienceandindustry/bridges/

TEKS:

Science

*SCI.4.6D Design an experiment to test the effect of force on an object such as <u>a push or a pull</u>, <u>gravity</u>, friction, or magnetism.

® SCI.4.2B Collect and record data by observing and measuring, using the metric system, and using descriptive words and numerals such as labeled drawings, writing, and concept maps.

Math

® MATH 4.1A Apply mathematics to problems arising in everyday life, society, and the workplace.

® MATH 4.11A Estimate and use measurement tools to determine length (including perimeter), area, capacity, and weight/mass using standard units SI (metric) and customary. (Pre-Teach, Cycle 3)

ELPS	CCRS Science	CCRS Math	CCRS Cross-Disciplinary
C3D, C5B	5E1A, 8C2A	3A2F, 8C1C	1C1B, 1E2C

Engineering Design Loop: For more details, refer to the overview page.

Identify the Need: Teams of 2-3 students will be challenged to design a bridge deck.

Research the Problem Teams will conduct research on bridges using kid-friendly websites.

Develop Possible Solutions: Teams will use their researched information to create 2 bridge deck designs.

Select the Most Promising Solution: Teams will decide and select which of the 2 designs to make into their final bridge deck.

Construct a Prototype: Teams will build their bridge deck with their materials and according to their established procedures.

Test & Evaluate: Teams will test their bridge decks at the testing area to learn about forces.

Communicate their Design: Teams will share their bridge data, compare designs, and learn about what works from a discussion with other teams.

Redesign: Teams will redesign their bridges to withstand tensile forces (pulling).

Math Connection: Students will use an algorithm to calculate the stress of a sample bridge and then be challenged to calculate the stress of their bridge design in alignment with appropriate, grade level math standards.