AP Calculus Fall Final Exam up to 10 % Bonus on Final exam grade.

Question 1

 $\lim_{x \to 0} \tan \left(\frac{\sin \, 2\pi x}{6x} \right) =$

- (a) 0
- (b) $1/\sqrt{3}$
- (c) 1
- (d) $\sqrt{3}$
- (e) The limit does not exist

Question 2

A function f is defined on an interval [a, b]. Which of the following statements could be false?

- I. If f is differentiable on (a,b) and if f has no zeros on [a,b], then f(a) and f(b) have the same sign.
- II. If f is continuous on [a, b], and if f(a) < 0 and f(b) > 0, then there must be a point $c \in (a, b)$ such that f(c) = 0.
- III. If f is continuous on [a, b] and there is a point c in (a, b) such that f(c) = 0, then f(a) and f(b) have opposite sign.
- IV. If f is differentiable on an interval $I \supset [a,b]$, and if f(a) and f(b) have opposite sign, then there must be a point $c \in (a,b)$ such that f(c) = 0.
- (a) II only
- (b) II and IV
- (c) I, III and IV
- (d) II and III
- (e) I and III

Question 3

If $\frac{d}{dx}f(x) = g(x)$ and if $h(x) = e^{2x}$, then $\frac{d}{dx}f(h(x)) =$

- (a) $g(e^{2x})$
- (b) $2e^{2x} q(e^{2x})$
- (c) $2e^{2x}g(x)$
- (d) $e^{2x}g'(x)$
- (e) $e^{2x}g(e^{2x})$

Question 4

Evaluate:

$$\frac{d}{dx} \int_{3}^{-5x^2} \frac{2}{e^{4t}} dt$$

Question 5

$$\int_2^3 \frac{x}{x^2 + 1} \ dx =$$

- (A) $\frac{1}{2} \ln \frac{3}{2}$ (B) $\frac{1}{2} \ln 2$
- (C) ln 2
- (D) 2 ln 2
- (E) $\frac{1}{2} \ln$

Question 6

If
$$\int_0^k (2kx - x^2) dx = 18$$
, then $k =$

$$(A) - 9$$

$$(B) -3$$

Question 7

The radius of a sphere is increasing at a constant rate of 5 cm/sec. At the instant when the volume of the sphere is increasing at 35 cm3/sec, What is the surface area of the sphere?