282

Basic Integration Rules

The inverse nature of integration and differentiation can be verified by substituting F'(x) for f(x) in the indefinite integration definition to obtain

$$\int F'(x) \ dx = F(x) + C.$$

Integration is the "inverse" of differentiation.

Moreover, if $\int f(x) dx = F(x) + C$, then

$$\frac{d}{dx}\bigg[\int f(x)\ dx\bigg] = f(x).$$

Differentiation is the "inverse" of integration.

REMARK The Power Rule for Integration has the restriction that $n \neq -1$. To evaluate $\int x^{-1} dx$, you must use the natural log rule. (See Exercise 75.)

These two equations allow you to obtain integration formulas directly from differentiation formulas, as shown in the following summary.

Basic Integration Rules

Differentiation Formula

$$\frac{d}{dx}[C] = 0$$

$$\frac{d}{dx}[kx] = k$$

$$\frac{d}{dx}[kf(x)] = kf'(x)$$

$$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$$

$$\frac{d}{dx}[x^n] = nx^{n-1}$$

$$\frac{d}{dx}[\sin x] = \cos x$$

$$\frac{d}{dx}[\cos x] = -\sin x$$

$$\frac{d}{dx}[\tan x] = \sec^2 x$$

$$\frac{d}{dx}[\sec x] = \sec x \tan x$$

$$\frac{d}{dx}[\cot x] = -\csc^2 x$$

$$\frac{d}{dx}[\cot x] = -\csc x \cot x$$

$$\frac{d}{dx}[e^x] = e^x$$

$$\frac{d}{dx}[a^x] = (\ln a)a^x$$

$$\frac{d}{dx}[\ln x] = \frac{1}{x}, x > 0$$

Integration Formula

Things about Formula
$$\int 0 dx = C$$

$$\int k dx = kx + C$$

$$\int kf(x) dx = k \int f(x) dx$$

$$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$$
Power Rule
$$\int \cos x dx = \sin x + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int \sec^2 x dx = \tan x + C$$

$$\int \sec x \tan x dx = \sec x + C$$

$$\int \csc^2 x dx = -\cot x + C$$

$$\int \csc^2 x dx = -\cot x + C$$

$$\int e^x dx = e^x + C$$

$$\int a^x dx = \left(\frac{1}{\ln a}\right) a^x + C$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

Calculus Practice problems:

Week 19: January/11/2016 to 1/16/2016

1) Page 287, even number Problems