Define the number "e"

Euler's number

The number
$$e$$
 is defined as the number that the expression
$$\left(1+\frac{1}{n}\right)^n$$
 approaches as $n\to\infty$. In calculus, this is expressed using limit notation as
$$e=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n$$

n	1 n	$1 + \frac{1}{n}$	$\left(1+\frac{1}{n}\right)^n$
1	1	2	2
2	0.5	1.5	2.25
5	0.2	1.2	2.48832
10	0.1	1.1	2.59374246
100	0.01	1.01	2.704813829
	0.001	1.001	2.716923932
1,000	0.0001	1.0001	2.718145927
10,000		1.00001	2.718268237
100,000	0.00001	1.000001	2.718280469
1,000,000	0.000001	$1 + 10^{-9}$	2.71828182

e (Euler's Number)

The number e is a famous <u>irrational number</u>, and is one of the most important numbers in mathematics.

The first few digits are:

2.7182818284590452353602874713527 (and more ...)

It is often called **Euler's number** after Leonhard Euler.

And Euler is spoken like "Oiler".

e is the base of the Natural <u>Logarithms</u> (invented by John Napier).

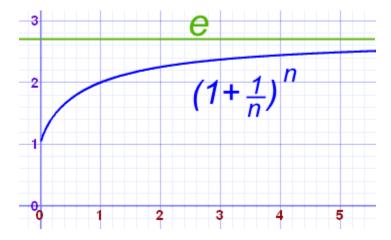
e is found in many interesting areas, so it is worth learning about.

Calculating

There are many ways of calculating the value of e, but none of them ever give an exact answer, because e is <u>irrational</u> (not the ratio of two integers).

But it is known to over 1 trillion digits of accuracy!

For example, the value of $(1 + 1/n)^n$ approaches e as n gets bigger and bigger:



n	$(1+1/n)^n$
1	2.00000
2	2.25000
5	2.48832
10	2.59374
100	2.70481
1,000	2.71692
10,000	2.71815
100,000	2.71827

Another Calculation

The value of e is also equal to 1/0! + 1/1! + 1/2! + 1/3! + 1/4! + 1/5! + 1/6! + 1/7! + ... (etc)

(Note: "!" means <u>factorial</u>)

The first few terms add up to: 1 + 1 + 1/2 + 1/6 + 1/24 + 1/120 = 2.718055556

And you can try that yourself at Sigma Calculator.

Remembering

Or you can remember the curious pattern that after the "2.7" the number "1828" appears TWICE:

2.7 1828 1828

And following THAT are the angles 45°, 90°, 45° in a <u>Right-Angled Isosceles</u> (two equal angles) <u>Triangle</u>:

2.7 1828 1828 45 90 45

(An instant way to seem really smart!)

Advanced: Use of *e* in Compound Interest

Often the number e appears in unexpected places.

For example, *e* is used in Continuous Compounding (for loans and investments):

Formula for Continuous Compounding

Why does that happen?

Well, the formula for Periodic Compounding is:

$$FV = PV (1+r/n)^n$$

where **FV** = Future Value **PV** = Present Value **r** = annual interest rate (as a decimal) **n** = number of periods

But what happens when the number of periods heads to infinity?

The answer lies in the similarity between:

$$(1+r/n)^n$$
 and $(1+1/n)^n$
Compounding Formula e (as n approaches infinity)

By substituting $\mathbf{x} = \mathbf{n/r}$:

- r/n becomes 1/x and
- **n** becomes **xr**

And so:

$$(1+r/n)^n$$
 becomes $(1+(1/x))^{xr}$

Which is **just like** the formula for e (as n approaches infinity), with an extra \mathbf{r} as an exponent.

So, as **x** goes to **infinity**, then
$$(1+(1/x))^{xr}$$
 goes to e^{r}

And that is why *e* makes an appearance in interest calculations!

Transcendental

e is also a transcendental number.