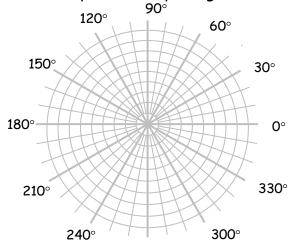

Polar Graphing Notes: Lines and Circles

Ex 1: Graph the polar equation r = 4

A. Find points in a table:

θ	r = 4	(r, θ)
0°		
30°		
60°		
30° 60° 90°		
120°		
150°		
180°		
etc.		

B. Plot points on a polar grid:


- C. Algebraically change the polar equation r = 4 into a Cartesian equation.
- D. What can you guess about the polar equation r = -3?

Ex 2: Graph the polar equation $r = -2\sin\theta$

A. Find points in a table:

θ	$r = -2\sin\theta$	(r, θ)
0°		
30°		
60°		
90°		
30° 60° 90° 120°		
150°		
180°		

B. Plot points on a polar grid:

- C. Algebraically change the polar equation $r = -2\sin\theta$ into a Cartesian equation
- D. What symmetry do you notice in the graph?

Polar Circles Summary: (Fill in the blanks!)

			_
•	r	=	constant

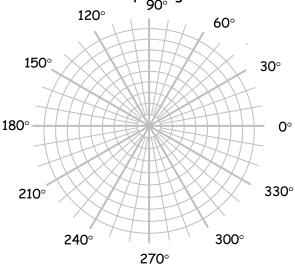
- o circle with center _____
- o radius = #

• $r = a \sin \theta$

- o circle with center _____ the pole
- \circ radius = $\left|\frac{a}{2}\right|$
- o need to calculate points at 0°, 30°, 60°, 90°, and others are _____
- o symmetric across the y-axis
- o If a > 0 circle is _____ the x-axis
- o If a < 0 circle is _____ the x-axis

• $r = a \cos \theta$

- o circle with center _____ the pole
- \circ radius = $\left| \frac{a}{2} \right|$
- o need to calculate points at 0°, 30°, 60°, 90°, and others are _____
- o symmetric across the x-axis
- o If a > 0 circle is on _____ of the y-axis
- o If a < 0 circle is on _____ of the y-axis

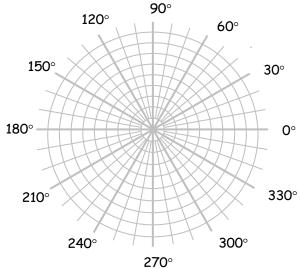

Ex 3: Give identifying features of the polar equation given. Then change the polar equation to Cartesian and verify your answers.

1.
$$r = 4\cos\theta$$

2.
$$r = -3\sin\theta$$

Ex 4: Graph the polar equation $\theta = 135^{\circ}$

A. Plot on a polar grid:


B. Algebraically change the polar equation $\theta = 135^{\circ}$ into a Cartesian equation.

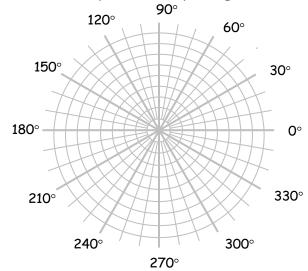
Ex 5: Graph the polar equation $r = \frac{3}{\sin \theta}$

A. Find points in a table:

θ	$r = \frac{3}{\sin \theta}$	(r, θ)
0°		
30°		
30° 60° 90° 120°		
90°		
120°		
150° 180°		
180°		

B. Plot points on a polar grid:

C. Algebraically change the polar equation $r = \frac{3}{\sin \theta}$ into a Cartesian equation


D. What can you guess about the polar equation $r\cos\theta=6$? Change it to Cartesian to verify your guess.

Ex 6: Graph the polar equation $r = \frac{3}{\cos \theta - \sin \theta}$

A. Find points in a table:

θ	r =3	(r, θ)
	, _ cosθ – sinθ	
0°		
30°		
60°		
90°		
30° 60° 90° 120°		
150°		
180°		

B. Plot points on a polar grid:

C. Algebraically change the polar equation $r = \frac{3}{\cos \theta - \sin \theta}$ into a Cartesian equation

Polar Lines Summary:

To graph polar lines, you must find and plot at least 2 points!

- $r\sin\theta$ = constant (or
 - o horizontal line at y = #

- θ = constant
 - o line through _____

- $r\cos\theta$ = constant (or
 - o vertical line at x = #

- $r = \frac{a}{b\cos\theta \pm c\sin\theta}$
 - o oblique (_____) line, not through pole

Ex 7: Give identifying features of the polar equation given. Then change the polar equation to Cartesian and verify your answer.

)

)

1.
$$r = \frac{3}{2\cos\theta + \sin\theta}$$