Pre_Calc POWs and HOWs for Week 32 to week 35

Week Number	POW	HOW
Week 32 Due 4/24/2015	POW 32: 1)Problems on PDF, see Problem below	HOW 32: 1) Page 767 Use problem #12 to Show if Problem #4 is true or False. 2) Page 767 Pr 34: Use Cramer's rule solve problem by hand and use graphing calculator to check your answer.
Week 33 Due 5/1/2015	POW 33: 1) Page 914 Problem 12 and 14. 2) Problems on PDF, see on page 2.	HOW 33: 1)Page 826 Problem 61 2) Page 826 Problem 62 3) Page 814 Problem 56
Week 34 Due 5/8/2015	POW 34: From chapter 13, coming soon	HOW 34: 1)Page 826 Problem 85 2) Page 826 Problem 86
Week 35 Due 5/15/2015	POW 35: From chapter 13, coming soon	HOW 35: 1)Chapter test pp.828 (odd and non-identical problems)

Pre-Calc POW 32

Question 2

You may not use a calculator in this question.

2.1 Determine the value of:

$$\frac{\sin(-120^{\circ})\cos 660^{\circ} \cdot \tan 315^{\circ}}{(\cos 310^{\circ} \cdot \sin 140^{\circ}) + \sin^{2} 410^{\circ}}$$
(8)

2.2 Simplify:

2.2.1
$$\frac{\sin(180^{\circ} - x) \cdot \tan(90^{\circ} - x)}{\cos(90^{\circ} - x) \cdot \cos(360^{\circ} - x) \cdot \cot(180^{\circ} - x)}$$
(7)

2.2.2
$$\frac{sec^{2}(180^{\circ} + x) - \frac{cos^{2}(270^{\circ} + x)}{(1 - sin^{2}x)}}{sin(270^{\circ} - x) \cdot tan(180^{\circ} + x) \cdot cosec(-x)}$$
(10)

2.3 Prove the following identity:

$$\frac{\cos x}{\sin x - 1} - \frac{1}{\tan x - \csc x \cdot \sec x} = -\sec x \tag{11}$$

2.4 If $\cot \theta = a$, prove that

$$a + \frac{1}{a} = \csc(180^{\circ} - \theta) \csc^{2}(270^{\circ} - \theta) \cos(-\theta)$$
 (10)

Pre Calc POW 33


Question 7

7.1 If $f(x) = 2x - \frac{1}{x}$, determine f'(x) using first principles. (6)

7.2 Determine:
$$\frac{d}{dx} \left(-3x^4 - \frac{x}{\sqrt{x}} + 6x\sqrt{x} \right)$$
 (4)

- 7.3 Given: $f(x) = x^3 3x^2 9x 5$
 - 7.3.1 Draw a sketch graph of the function f. Clearly show the co-ordinates of the turning points and all the intercepts on the axes.
 - **7.3.2** Use your graph and determine all the values of x for which $f(x) \cdot f'(x) > 0$.
- 7.4 A piece of wire, three metres long, is bent into the framework of a rectangular prism with a square base, as shown in the figure.

Calculate the lengths of the sides of the frame which will ensure the maximum volume of a solid block with the same dimensions.

Page 914
Problems 12 and 14