

For all positive values of x, the function f is defined by $f(x) = x^3 - x^{-2}$.

Of the following, which is the best approximation of f(x) for values of x greater than 1,000?

(A) X^3

(C) X^5

(B) X⁴

(D) X⁶

The terminal side of an angle θ , in standard position passes through the point (7, -24). What is $\csc \theta$?

- a. $-\frac{24}{25}$
- b. $-\frac{25}{24}$
- c. $\frac{24}{25}$
- d. $-\frac{25}{7}$
- e. $-\frac{24}{7}$

In the expression $\frac{u}{\sqrt{u^2-1}}$, let $u=\csc x$. Which of these is equivalent to the resulting expression?

- a. $\sec x(\sec x + \tan x)$
- b. cscx
- c. sec x
- d. $\csc x(\csc x + \cot x)$
- e. $\frac{\cos x(\sin x 1)}{\sin x}$

T3 Form the difference quotient for $f(x) = \frac{1}{5x+7}$ and evaluate it at x = -3

- a. $\frac{-1}{8}$
- b. $\frac{-5h}{64-40h}$
- c. $\frac{-5}{40h-64}$
- d. $\frac{5}{40h-64}$
- e. $\frac{-5h}{40h-64}$

- a. $\log_6 2$
- b. 3log₆ 2
- c. 2 log₆ 3
- d. log, 6
- e. log₆16

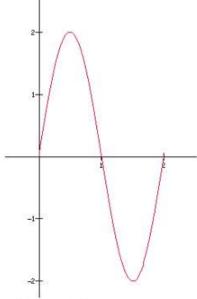
- A. $\frac{1}{3}$
- B. 1
- C. 3
- D. $\frac{1}{2}$
- E. 9

W3

If $\log_b 3 = P$ and $\log_b 4 = Q$, find $\log_b 18$.

A.
$$\frac{P^2Q}{2}$$

A.
$$\frac{P^2Q}{2}$$
 B. $2P + \frac{Q}{2}$ C. $\frac{P}{2} + 2Q$ D. $P + Q^2$ E. $P^2 + \sqrt{Q}$


C.
$$\frac{P}{2} + 2Q$$

D.
$$P+Q$$

E.
$$P^2 + \sqrt{Q}$$

W4

The figure below shows the graph of a cosine function for one period. Which of the following is an equation for the graph?

a.
$$y = 2\cos\left(\pi\left(x - \frac{1}{2}\right)\right)$$

b.
$$y = 2\cos\left(\frac{\pi}{2}(x+1)\right)$$

$$c. \quad y = 2\cos(2x+1)$$

d.
$$y = 2\cos(\pi(x+1))$$

e.
$$y = \cos\left(2\left(x + \frac{\pi}{2}\right)\right)$$