Below are the recommended two-week lesson activities:

<table>
<thead>
<tr>
<th>Day</th>
<th>TEKS / Skills</th>
<th>Approximate Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>★ MATH.4.2B Represent the value of the digit in whole numbers through 1,000,000,000 and decimals to the hundredths using expanded notation and numerals.</td>
<td>30 minutes</td>
</tr>
<tr>
<td>2</td>
<td>★ MATH.4.2B Represent the value of the digit in whole numbers through 1,000,000,000 and decimals to the hundredths using expanded notation and numerals.</td>
<td>30 minutes</td>
</tr>
<tr>
<td>3</td>
<td>★ MATH.4.4A Add and subtract whole numbers and decimals to the hundredths place using the standard algorithm.</td>
<td>30 minutes</td>
</tr>
<tr>
<td>4</td>
<td>★ MATH.4.4A Add and subtract whole numbers and decimals to the hundredths place using the standard algorithm.</td>
<td>30 minutes</td>
</tr>
<tr>
<td>5</td>
<td>★ MATH.4.4H Solve with fluency one- and two-step problems involving multiplication and division, including interpreting remainders.</td>
<td>30 minutes</td>
</tr>
<tr>
<td>6</td>
<td>★ MATH.4.4H Solve with fluency one- and two-step problems involving multiplication and division, including interpreting remainders.</td>
<td>30 minutes</td>
</tr>
<tr>
<td>7</td>
<td>★ MATH.4.5D Solve problems related to perimeter and area of rectangles where dimensions are whole numbers.</td>
<td>30 minutes</td>
</tr>
<tr>
<td>8</td>
<td>★ MATH.4.5D Solve problems related to perimeter and area of rectangles where dimensions are whole numbers.</td>
<td>30 minutes</td>
</tr>
<tr>
<td>9</td>
<td>★ MATH.4.7C Determine the approximate measures of angles in degrees to the nearest whole number using a protractor.</td>
<td>30 minutes</td>
</tr>
<tr>
<td>10</td>
<td>★ MATH.4.7C Determine the approximate measures of angles in degrees to the nearest whole number using a protractor.</td>
<td>30 minutes</td>
</tr>
</tbody>
</table>
Day 1: Place Value of Whole Numbers and Decimals

Activity/Task
Have students cut apart the Place Value Cards and place them face down in a pile. Using the playing cards (or digit cards), have students create a number to the millions place and through the thousandths place. Instruct students to record the number created using a place-value chart.

<table>
<thead>
<tr>
<th>Million</th>
<th>Hundred Thousand</th>
<th>Ten Thousand</th>
<th>Thousand</th>
<th>Hundred</th>
<th>Ten</th>
<th>One</th>
<th>Tenths</th>
<th>Hundredths</th>
<th>Thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Have students choose a Place Value Card. Using the number created, have the student identify the value of the digit in the chosen place value position. Ask student to explain their thinking and process using this sentence stem:

- In the number ________________, the value of the digit in the ______________ place is _____________ because ______________ equals ______________.

Example sentence stem:

In the number 7,123,456.89 the value of the digit in the hundreds place is 400 because (4 x 100) equals 400.

Resources
Unit 1 Modules 1 and 2: Whole Number and Decimal Place Value (Texas Go Math!)
1.1 Place Value and Patterns
2.2 Decimal Place Value

Handouts
Place Value Chart
Digit Cards (or Playing Cards)

Additional Notes
A set of playing cards can be used, if available, in place of the digit cards.

(A,2,3,4,5,6,7,8,9, J, Q, K where A=1 and J, Q, K = 0)

Day 2: Comparing and Ordering Whole Numbers

Activity/Task
Have students review their work from the previous day on decimal place value. Ask students to create another number. Instead of writing the number in standard form (like a regular number), ask students to write the number in the form of a riddle using the following sentence stem for at least 5 of the place value positions:

- The value of the digit in the ______________ place is ____________.

Sample riddle:

The value of the digit in the ones place is 5.
The value of the digit in the hundreds place is 600.
The value of the digit in the hundred thousands place is 300,000.
The value of the digit in the tenths place is 0.4.
The value of the digit in the hundredths place is 0.07.

What could be my number? 300,605.47 (multiple numbers are possible, since not every digit is identified)

Have students write a riddle for two more created numbers and record the actual number beside it.

Resources
Unit 1 Modules 1 and 2: Whole Number and Decimal Place Value (Texas Go Math!)
1.1 Place Value and Patterns
2.2 Decimal Place Value

Handouts
Place Value Chart
Digit Cards (or Playing Cards)

Additional Notes
A set of playing cards can be used, if available, in place of the digit cards.

(A,2,3,4,5,6,7,8,9, J, Q, K where A=1 and J, Q, K = 0)
Day 3: Add and Subtract Whole Numbers and Decimals

<table>
<thead>
<tr>
<th>Activity/Task</th>
<th>Have students shuffle the playing cards (or digit cards) and place them face down in a pile. Have them pick eight cards. Ask students to create two four-digit numbers that go to the hundredths place. First, find the sum of the two numbers created. Then subtract the sum from the number 200.</th>
</tr>
</thead>
</table>
| Example | Step 1: $36.52 + 89.74 = 126.26$
Step 2: $200 – 126.26 = 73.74$ |
| Resources | **Unit 2 Module 6: Number and Operations: Whole Number and Decimal Operations (Texas Go Math!)**
6.1 Add Whole Numbers
6.2 Subtract Whole Numbers
6.4 Add Decimals
6.5 Subtract Decimals |
| Handouts | Digit Cards |
| Additional Notes | A set of playing cards can be used, if available, in place of the digit cards. (A,2,3,4,5,6,7,8,9, J, Q, K where A=1 and J, Q, K = 0) |

Day 4: Add and Subtract Whole Numbers and Decimals

| Activity/Task | Provide students with a collection of coins and money. The student will randomly select a bill and some coins, such as a $5, $10, or $20 and four coins. Ask students to record the amount of money they will use to write a story problem. Then students represent their problem using a strip diagram or bar model. Ask the student to use their model to solve their problem.
Ask students to write another story problem only this time the amount of money represents the total amount due to pay for some items at a store. If $50 is given to the cashier, how much change should be given back? Have students explain how they know exactly how much change is to be given using the following sentence stem:
• I should receive ________________ back in change because _________________. |
| Resources | **Unit 2 Module 6: Number and Operations: Whole Number and Decimal Operations (Texas Go Math!)**
6.1 Add Whole Numbers
6.2 Subtract Whole Numbers
6.4 Add Decimals
6.5 Subtract Decimals |
| Handouts | None |
Day 5: Problem Solving with Multiplication and Division

| Activity/Task | Have students read the following math story three times:
| | 1) Read the first time and picture what the math story is about.
| | 2) Read the second time and focus on the question and what you need to find out.
| | 3) Read the third time and determine what important information is needed.
| | Jacob unpacked 78 boxes of baseball cards to display at a sports store. Each box had 34 cards.
| | How many cards did Jacob unpack?
| | Show them this strip diagram and equation on how to model the math story.
| Strip Diagram: | **Total number of cards in all**
| |
| | ![Strip Diagram](image)
| Equation: | **Equation:**
| | $78 \times 34 = 2,652$
| | Jacob unpacked 2,652 cards.
| | Then, provide students the Writing Choice Board handout and have them represent two problems with both a strip diagram and an equation. Then ask students to solve the problem.
| Resources | **Unit 2 Modules 7, 8, 9, 10: Multiplication and Division**
| | 7.7 Problem Solving: Multi-Step Multiplication Problems
| | 8.7: Problem Solving: Multiply 2-Digit Numbers
| | 9.2 Problem Solving: Interpret the Remainder
| | 10.2 Divide Using Partial Quotients
| Handouts | Writing Choice Board |
Day 6: Problem Solving with Multiplication and Division

Activity/Task

Have students review their work from the day before. Ask them to explain in writing how they can use strip diagrams and equations to help them solve math stories.

Nicole has 912 stickers. She separated the stickers into 8 equal groups. How many stickers are in 4 of the groups?

Show them this strip diagram and equation on how to model the math story.

Strip Diagram:

Equations:

\[912 \div 8 = 114 \text{ and } 114 \times 4 = 456 \]

Ask students to return to the Writing Choice Board and choose 2 more problems to represent with a strip diagram and an equation before solving.

Resources

Unit 2 Modules 7, 8, 9, 10: Multiplication and Division
7.7 Problem Solving: Multi-Step Multiplication Problems
8.7: Problem Solving: Multiply 2-Digit Numbers
9.2 Problem Solving: Interpret the Remainder
10.2 Divide Using Partial Quotients

Handouts

Writing Choice Board

Day 7: Area and Perimeter

Activity/Task

Provide students with a piece of grid paper and a stack of digit cards. Have students shuffle the digit cards and place them face down in a pile. Have them pull two digit cards. These digit cards represent the length and width of a rectangle. Have the students draw this rectangle on the grid paper and then calculate the perimeter \((2l + 2w)\) and area \((l \times w)\) of the rectangle drawn. Then record the information in a chart similar to the one below. Have students repeat this process at least five times.

<table>
<thead>
<tr>
<th>length</th>
<th>width</th>
<th>perimeter</th>
<th>area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resources

Unit 3 Module 12: Number Patterns, Perimeter, and Area (Texas Go Math!)
12.3 Model Perimeter Formulas
12.4 Model Area Formulas
12.5 Problem Solving: Find the Perimeter and Area

Handouts

Grid Paper
Digit Cards
Day 8: Area and Perimeter

| Activity/Task | Provide students with a sheet of grid paper. Tell students that each square will represent one square foot. Have students use the grid paper to create a scale drawing of a rectangular living space with an area of 200 square feet. Students will include the following rectangular furniture items in their living space: sofa (36 square feet), a coffee table (18 square feet), and two end tables (6 square feet each). Then, ask students to respond to the following questions:
• What is the perimeter of your rectangular living space?
• How much living space do you have after placing your furniture? How do you know?
• What is the perimeter of your sofa?
• What is the perimeter of an end table? |
| Resources | **Unit 3 Module 12: Number Patterns, Perimeter, and Area (Texas Go Math!)**
12.3 Model Perimeter Formulas
12.4 Model Area Formulas
12.5 Problem Solving: Find the Perimeter and Area |
| Handouts | Grid Paper |

Day 9: Angle Measurement

| Activity/Task | Angle Measurement
Ask students to create a map of their neighborhood, identifying places of interest such as schools, parks, libraries, stores, homes, etc. After creating the map, ask students to identify the types of angles formed by each of the intersecting streets as acute, obtuse, or right angles. Then ask students to respond to the following sentence stems to describe at least 3 of these intersections:
• The angle formed by ____________ and ______________ is a(n) ____________ angle because ________________. |
| Resources | **Unit 4 Module 14: Measure Angles (Texas Go Math!)**
14.1: Angles and Fractional Parts of a Circle
14.2: Degrees
14.3: Measure and Draw Angles |
| Handouts | None |
Day 10: Angle Measurement

<table>
<thead>
<tr>
<th>Activity/Task</th>
<th>Have students study the protractor and description below.</th>
</tr>
</thead>
</table>

![Protractor with angles](image)

This angle is an acute angle because it is less than 90°. I am choosing to use the bottom row of numbers. I see one of the rays crosses the 10° mark and the other crosses the 75° mark. The angle measure is the difference.

\[
75° - 10° = 65°
\]

Then ask students to determine the measurements of the angles on the Measuring Angles handout. For each of the angles given, ask students to provide a description on how they found the angle similar to the example provided above.

<table>
<thead>
<tr>
<th>Resources</th>
<th>Unit 4 Module 14: Measure Angles (Texas Go Math!)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14.1: Angles and Fractional Parts of a Circle</td>
</tr>
<tr>
<td></td>
<td>14.2: Degrees</td>
</tr>
<tr>
<td></td>
<td>14.3: Measure and Draw Angles</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Handouts</th>
<th>Measuring Angles</th>
</tr>
</thead>
</table>
Writing Choice Board

Choose 1 writing prompt and respond in your math notebook.

<table>
<thead>
<tr>
<th>Solve the following math problem:</th>
<th>Represent and solve the following problem with a strip diagram or an equation:</th>
<th>Solve the following problem using a strategy of your choice:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carlos bought 4 dozen cupcakes to bring to his class Christmas party. Every student ate three cupcakes. How many students are in Carlos’s class?</td>
<td>The football coach bought a total of 256 sports drink bottles to share with his team after practice last month. The team drank half of the bottles during the first two weeks. They drank the remaining bottles over the next three weeks. They drank the same number of bottles each week. How many bottles of water did they drink during each of these three weeks? Explain how your representation helped you solve the problem.</td>
<td>Mrs. Viera bought 1,052 fl oz of fruit punch to put into cups at the class party. She filled each cup with 8 fl oz of fruit punch until there was not enough fruit punch to fill another cup. How many fluid ounces of fruit punch did Mrs. Viera have left over? Explain how you solved the problem using mathematical language and complete sentences.</td>
</tr>
<tr>
<td>Explain how you solved the problem using mathematical language and complete sentences.</td>
<td>Represent and solve the following problem using an equation:</td>
<td>Represent and solve the following problem using an equation:</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Catelyn made 12 friendship bracelets each day for 7 days. She used 36 beads for each bracelet. What was the total number of beads Catelyn used on these 7 days?</td>
<td>Catelyn made 12 friendship bracelets each day for 7 days. She used 36 beads for each bracelet. What was the total number of beads Catelyn used on these 7 days? Explain how your representation helped you solve the problem.</td>
<td>Claude bought 6 pairs of jeans for $35 each. He also bought a belt for $12.85. What was the total amount Claude paid for the jeans and belt? Explain how your representation helped you solve the problem.</td>
</tr>
<tr>
<td>Solve the following math problem:</td>
<td>Represent and solve the following problem using a strip diagram:</td>
<td>Solve the following math problem:</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Mariah had 87 stamps in her collection. Her brother gives her 39 more stamps. She wants to place the same number of stamps on the 7 pages she has in stamp collection album. How many stamps will she put on each page?</td>
<td>Mariah had 87 stamps in her collection. Her brother gives her 39 more stamps. She wants to place the same number of stamps on the 7 pages she has in stamp collection album. How many stamps will she put on each page? Explain how you solved the problem using mathematical language and complete sentences.</td>
<td>Kesia bought 4 boxes of gum. Each box had 12 packages of gum. She gave each of nine friends three packages of gum. How many packages of gum did Kesia have left? Explain how you solved the problem using mathematical language and complete sentences.</td>
</tr>
<tr>
<td>Explain how you solved the problem using mathematical language and complete sentences.</td>
<td>Represent and solve the following problem using a strip diagram:</td>
<td>4.5A</td>
</tr>
</tbody>
</table>
Adding and Subtracting Positive Rational Numbers

What is the angle measure of $\angle A$?

What is the angle measure of $\angle B$?

What is the angle measure of $\angle C$?

What is the angle measure of $\angle D$?