Cycle 1

<table>
<thead>
<tr>
<th>Unit</th>
<th># Class Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>29 Days</td>
</tr>
<tr>
<td></td>
<td>Aug. 26 - Oct. 4, 2019</td>
</tr>
</tbody>
</table>

The recommended number of class periods is less than the number of days in the grading cycle to accommodate differentiated instruction, extended learning time, and assessment days. Complete instructional planning information and support are in the HISD Curriculum documents.

Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)

The **bold face** words in the TEKS/SEs indicate concepts addressed specifically in this unit, the unbolded concepts are addressed in other units of this course. The student will:

The Mathematical Process Standards are integrated throughout the course in all activities and lessons. Teachers should refer to these standards for instructional strategies and depth of rigor. Specific process standards have been highlighted for each unit, but these process standards should not be the only process standards associated with the daily lessons.

Mathematical Process Standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:

- **ALGII.1A** Apply mathematics to problems arising in everyday life, society, and the workplace.
- **ALGII.1B** Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
- **ALGII.1C** Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
- **ALGII.1D** Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.
- **ALGII.1E** Create and use representations to organize, record, and communicate mathematical ideas.
- **ALGII.1F** Analyze mathematical relationships to connect and communicate mathematical ideas.
- **ALGII.1G** Display, explain, or justify mathematical ideas and arguments using precise mathematical language in written or oral communication.
<table>
<thead>
<tr>
<th>Cycle 1</th>
<th>29 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aug. 26 - Oct. 4, 2019</td>
</tr>
</tbody>
</table>

The recommended number of class periods is less than the number of days in the grading cycle to accommodate differentiated instruction, extended learning time, and assessment days. Complete instructional planning information and support are in the HISD Curriculum documents.

Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)

The bold face words in the TEKS/SEs indicate concepts addressed specifically in this unit, the unbolded concepts are addressed in other units of this course.

The student will:

<table>
<thead>
<tr>
<th>Unit</th>
<th># Class Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1: Parent Functions and Data Regression</td>
<td>4 class periods (90-min. each) or 8 class periods (45-min. each)</td>
</tr>
</tbody>
</table>

Mathematical Process Standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:

- ALGII.1A Apply mathematics to problems arising in everyday life, society, and the workplace.
- ALGII.1D Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.
- ALGII.1E Create and use representations to organize, record, and communicate mathematical ideas.

Attributes of Functions and Their Inverses. The student applies mathematical processes to understand that functions have distinct key attributes and to understand the relationship between a function and its inverse. The student is expected to:

- ALGII.2A Graph the functions, \(f(x) = \sqrt{x} \), \(f(x) = \frac{1}{x} \), \(f(x) = x^3 \), \(f(x) = \sqrt[3]{x} \), \(f(x) = b^x \), \(f(x) = \log_b x \) where \(b = 2 \), \(10 \), and \(e \) and when applicable analyze the key attributes such as domain, range, intercepts, symmetries, asymptotic behavior, and maximum and minimum.

Number and Algebraic Methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:

- ALGII.7I Write the domain and range of a function in interval notation, inequalities and set notation.

Data. The student applies mathematical processes to analyze data, select appropriate models, write corresponding functions, and make predictions. The student is expected to:

- ALGII.8A Analyze data to select the appropriate model from among linear, quadratic, and exponential models.
- ALGII.8B Use regression methods available through technology to write a linear function, a quadratic function, and an exponential function from a given set of data.
- ALGII.8C Predict and make decisions and critical judgments from a given set of data using linear, quadratic, and exponential models.
The recommended number of class periods is less than the number of days in the grading cycle to accommodate differentiated instruction, extended learning time, and assessment days. Complete instructional planning information and support are in the HISD Curriculum documents.

Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)

The bold face words in the TEKS/SEs indicate concepts addressed specifically in this unit, the unbolded concepts are addressed in other units of this course. The student will:

Mathematical Process Standards

The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:

- **ALGII.1C** Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.

- **ALGII.1D** Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.

Quadratic and Square Root Functions, Equations, and Inequalities

The student applies mathematical processes to understand that quadratic and square root functions, equations, and quadratic inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:

- **ALGII.4C** Determine the effect on the graph of \(f(x) = \sqrt{x} \) when \(f(x) \) is replaced by \(af(x) \), \(f(x) + d \), \(f(bx) \), and \(f(x - c) \) for specific positive and negative values of \(a \), \(b \), \(c \), and \(d \).

Exponential and Logarithmic Functions and Equations

The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:

- **ALGII.5A** Determine the effects on the key attributes on the graphs of \(f(x) = b^x \) and \(f(x) = \log_b(x) \), where \(b \) is 2, 10 and \(e \) when \(f(x) \) is replaced by \(af(x) \), \(f(x) + d \), and \(f(x - c) \) for specific positive and negative real values of \(a \), \(c \), and \(d \).

Cubic, Cube Root, Absolute Value and Rational Functions, Equations, and Inequalities

The student applies mathematical processes to understand that cubic, cube root, rational, and absolute value functions and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:

- **ALGII.6A** Analyze the effect on the graphs of \(f(x) = x^3 \) and \(f(x) = \sqrt[3]{x} \) when \(f(x) \) is replaced by \(af(x) \), \(f(bx) \), \(f(x - c) \), and \(f(x) + d \) for specific positive and negative real values of \(a \), \(b \), \(c \), and \(d \).

- **ALGII.6G** Analyze the effect on the graphs of \(f(x) = \frac{1}{x} \), when \(f(x) \) is replaced by \(af(x) \), \(f(bx) \), \(f(x - c) \), and \(f(x) + d \) for specific positive and negative real values of \(a \), \(b \), \(c \), and \(d \).

Number and Algebraic Methods

The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:
Cycle 1

<table>
<thead>
<tr>
<th>Unit</th>
<th># Class Periods</th>
<th>The recommended number of class periods is less than the number of days in the grading cycle to accommodate differentiated instruction, extended learning time, and assessment days. Complete instructional planning information and support are in the HISD Curriculum documents.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug. 26 - Oct. 4, 2019</td>
<td>29 Days</td>
<td>The bold face words in the TEKS/SEs indicate concepts addressed specifically in this unit, the unbolded concepts are addressed in other units of this course. The student will:</td>
</tr>
</tbody>
</table>

Unit 3: Composition and Inverse of Functions

Students connect the relationship between a function and its inverse and use composition of functions to determine if functions are inverses of each other.

- **2 class periods** (90-min. each)
- **4 class periods** (45-min. each)

Mathematical Process Standards

- **ALGII.7I** Write the domain and range of a function in interval notation, inequalities and set notation.

Attributes of Functions and Their Inverses

The student applies mathematical processes to understand that functions have distinct key attributes and to understand the relationship between a function and its inverse. The student is expected to:

- **ALGII.1D** Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.
- **ALGII.1F** Analyze mathematical relationships to connect and communicate mathematical ideas.

Unit 4: Absolute Value Functions

Students solve absolute value equations and inequalities and apply attributes of transformations to absolute value functions.

- **4 class periods** (90-min. each)
- **8 class periods** (45-min. each)

Mathematical Process Standards

The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:

- **ALGII.1B** Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
- **ALGII.1D** Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.
- **ALGII.1F** Analyze mathematical relationships to connect and communicate mathematical ideas.
Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)

Attributes of Functions and Their Inverses.

The student applies mathematical processes to understand that functions have distinct key attributes and to understand the relationship between a function and its inverse. The student is expected to:

- **ALGII.2A** Graph the functions, \(f(x) = \sqrt{x} \), \(f(x) = \frac{1}{x} \), \(f(x) = x^3 \), \(f(x) = \frac{3}{x} \), \(f(x) = b^x \), \(f(x) = |x| \), and \(f(x) = \log_b x \) where \(b \) is 2, 10, and \(e \) and when applicable analyze the key attributes such as domain, range, intercepts, symmetries, asymptotic behavior, and maximum and minimum.

- **ALGII.2B** Graph and write the inverse of a function using notation such as \(f^{-1}(x) \).

- **ALGII.2C** Describe and analyze the relationship between a function and its inverse (quadratic and square root, logarithmic and exponential), including the restriction(s) on domain and which will restrict its range.

Cubic, Cube Root, Absolute Value and Rational Functions, Equations, and Inequalities.

The student applies mathematical processes to understand that cubic, cube root, rational, and absolute value functions and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:

- **ALGII.6C** Analyze the effect on the graphs of \(f(x) = |x| \) when \(f(x) \) is replaced by \(a \cdot f(x) \), \(f(bx) \), \(f(x - c) \), and \(f(x) + d \) for specific positive and negative real values of \(a, b, c \) and \(d \).

- **ALGII.6D** Formulate absolute value linear equations.

- **ALGII.6E** Solve absolute value linear equations.

- **ALGII.6F** Solve absolute value linear inequalities

Number and Algebraic Methods.

The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:

- **ALGII.7I** Write the domain and range of a function in interval notation, inequalities and set notation.
Cycle 1

<table>
<thead>
<tr>
<th>Unit</th>
<th># Class Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug. 26 - Oct. 4, 2019</td>
<td>29 Days</td>
</tr>
</tbody>
</table>

The recommended number of class periods is less than the number of days in the grading cycle to accommodate differentiated instruction, extended learning time, and assessment days. Complete instructional planning information and support are in the HISD Curriculum documents.

Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)

The **bold face** words in the TEKS/SEs indicate concepts addressed specifically in this unit, the unbolded concepts are addressed in other units of this course.

The student will:
Cycle 2

<table>
<thead>
<tr>
<th>Unit</th>
<th># Class Periods</th>
<th>Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 4: Absolute Value Functions</td>
<td>4 class periods (90-min. each) or 8 class periods (45-min. each)</td>
<td>The bold face words in the TEKS/SEs indicate concepts addressed specifically in this unit, the unbolded concepts are addressed in other units of this course. The student will:</td>
</tr>
</tbody>
</table>

Mathematical Process Standards

The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:

- **ALGII.1B** Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
- **ALGII.1D** Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.
- **ALGII.1F** Analyze mathematical relationships to connect and communicate mathematical ideas.

Attributes of Functions and Their Inverses

The student applies mathematical processes to understand that functions have distinct key attributes and to understand the relationship between a function and its inverse. The student is expected to:

- **ALGII.2A** Graph the functions, \(f(x) = \sqrt{x} \), \(f(x) = \frac{1}{x} \), \(f(x) = x^2 \), \(f(x) = \frac{3}{x} \), \(f(x) = b^x \), \(f(x) = |x| \), and \(f(x) = \log_b x \) where \(b \) is 2, 10, and \(e \) and when applicable analyze the key attributes such as domain, range, intercepts, symmetries, asymptotic behavior, and maximum and minimum.
- **ALGII.2B** Graph and write the inverse of a function using notation such as \(f^{-1}(x) \).
- **ALGII.2C** Describe and analyze the relationship between a function and its inverse (quadratic and square root, logarithmic and exponential), including the restriction(s) on domain and which will restrict its range.

Cubic, Cube Root, Absolute Value and Rational Functions, Equations, and Inequalities

The student applies mathematical processes to understand that cubic, cube root, rational, and absolute value functions and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:

- **ALGII.6C** Analyze the effect on the graphs of \(f(x) = |x| \) when \(f(x) \) is replaced by \(a \cdot f(x) \), \(f(bx) \), \(f(x - c) \), and \(f(x) + d \) for specific positive and negative real values of \(a, b, c \) and \(d \).
- **ALGII.6D** Formulate absolute value linear equations.
- **ALGII.6E** Solve absolute value linear equations.
- **ALGII.6F** Solve absolute value linear inequalities.

Number and Algebraic Methods

The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:
Cycle 2

<table>
<thead>
<tr>
<th>Unit</th>
<th>24 Days</th>
<th># Class Periods</th>
<th>The recommended number of class periods is less than the number of days in the grading cycle to accommodate differentiated instruction, extended learning time, and assessment days. Complete instructional planning information and support are in the HISD Curriculum documents.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct. 7 - Nov. 8, 2019</td>
<td>7 class periods (90-min. each) or 14 class periods (45-min. each)</td>
<td>The bold face words in the TEKS/SEs indicate concepts addressed specifically in this unit, whereas the unbolded concepts are addressed in other units of this course. The student will:</td>
<td></td>
</tr>
</tbody>
</table>

Mathematics – Algebra II

Unit 5: Matrices & Systems of Equations and Inequalities

- In real-world situations, students solve and analyze systems of linear equations with two or more variables using graphs, tables, matrices, and algebraic methods.
- **Mathematical Process Standards.** The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
 - **ALGII.1A** Apply mathematics to problems arising in everyday life, society, and the workplace.
 - **ALGII.1C** Select tools, including real objects, manipulatives, paper and pencil, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
 - **ALGII.1D** Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.

- **Systems of Equations and Inequalities.** The student applies mathematical processes to formulate systems of equations and inequalities, to use a variety of methods to solve, and to analyze reasonableness of solutions. The student is expected to:
 - **ALGII.3A** Formulate systems of equations, including systems consisting of three linear equations in three variables and systems consisting of two equations, the first linear and the second quadratic.
 - **ALGII.3B** Solve systems of three linear equations in three variables by using Gaussian elimination, technology with matrices, and substitution (including inverse matrices).
 - **ALGII.3E** Formulate systems of at least two linear inequalities in two variables.
 - **ALGII.3F** Solve systems of two or more linear inequalities in two variables.
 - **ALGII.3G** Determine possible solutions in the solution set of systems of two or more linear inequalities in two variables.
<table>
<thead>
<tr>
<th>Cycle 2</th>
<th>24 Days Oct. 7 - Nov. 8, 2019</th>
<th>The recommended number of class periods is less than the number of days in the grading cycle to accommodate differentiated instruction, extended learning time, and assessment days. Complete instructional planning information and support are in the HISD Curriculum documents.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)</td>
<td>The bold face words in the TEKS/SEs indicate concepts addressed specifically in this unit, the unbolded concepts are addressed in other units of this course.</td>
<td>The student will:</td>
</tr>
<tr>
<td>Unit</td>
<td># Class Periods</td>
<td>Mathematical Process Standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:</td>
</tr>
<tr>
<td>Unit 6: Transformation and Attributes of Quadratic Functions</td>
<td>4 class periods (90-min. each) or 8 class periods (45-min. each)</td>
<td>ALGII.1D Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.</td>
</tr>
<tr>
<td>(continued in Cycle 3)</td>
<td>ALGII.1G Display, explain, or justify mathematical ideas and arguments using precise mathematical language in written or oral communication.</td>
<td></td>
</tr>
<tr>
<td>Attributes of Functions and Their Inverses. The student applies mathematical processes to understand that functions have distinct key attributes and to understand the relationship between a function and its inverse. The student is expected to:</td>
<td>ALGII.2A Graph the functions, (f(x) = \sqrt{x}, \quad f(x) = \frac{1}{x}, \quad f(x) = x^3, \quad f(x) = \sqrt[3]{x}, \quad f(x) = b^x, \quad f(x) =</td>
<td>x</td>
</tr>
<tr>
<td>Quadratic and Square Root Functions, Equations, and Inequalities. The student applies mathematical processes to understand that quadratic and square root functions, equations, and quadratic inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:</td>
<td>ALGII.4B Write the equation of a parabola using given attributes, including vertex, focus, directrix, axis of symmetry, and direction of opening.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ALGII.4D Transform a quadratic function (f(x) = ax^2 + bx + c) to the form (f(x) = a(x – h)^2 + k) to identify the different attributes of (f(x)).</td>
</tr>
<tr>
<td>Number and Algebraic Methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:</td>
<td>ALGII.7I Write the domain and range of a function in interval notation, inequalities and set notation.</td>
<td></td>
</tr>
</tbody>
</table>
The recommended number of class periods is less than the number of days in the grading cycle to accommodate differentiated instruction, extended learning time, and assessment days. Complete instructional planning information and support are in the HISD Curriculum documents.

<table>
<thead>
<tr>
<th>Cycle 2</th>
<th>24 Days Oct. 7 - Nov. 8, 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td># Class Periods</td>
</tr>
<tr>
<td></td>
<td>Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)</td>
</tr>
</tbody>
</table>

The **bold face** words in the TEKS/SEs indicate concepts addressed specifically in this unit, the unbolded concepts are addressed in other units of this course.

The student will:
Unit: Transformations and Attributes of Quadratic Functions

Students analyze the transformation of a quadratic function through multiple representations.

(continued from Cycle 2)

<table>
<thead>
<tr>
<th>Cycle 3</th>
<th>24 Days Nov. 11-Dec. 19, 2019</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unit</th>
<th># Class Periods</th>
<th>The recommended number of class periods is less than the number of days in the grading cycle to accommodate differentiated instruction, extended learning time, and assessment days. Complete instructional planning information and support are in the HISD Curriculum documents.</th>
</tr>
</thead>
</table>
| Unit 6: Transformations and Attributes of Quadratic Functions | 4 class periods (90-min. each) or 8 class periods (45-min. each) | **Mathematical Process Standards.** The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
- ALGII.1D Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.
- ALGII.1G Display, explain, or justify mathematical ideas and arguments using precise mathematical language in written or oral communication. |

| **Attributes of Functions and Their Inverses.** The student applies mathematical processes to understand that functions have distinct key attributes and to understand the relationship between a function and its inverse. The student is expected to:
- ALGII.2A Graph the functions, \(f(x) = \sqrt{x} \), \(f(x) = \frac{1}{x} \), \(f(x) = x^2 \), \(f(x) = \sqrt[3]{x} \), \(f(x) = b^x \), \(f(x) = |x| \), and \(f(x) = \log_b x \) where \(b \) is 2, 10, and \(e \) and when applicable analyze the key attributes such as domain, range, intercepts, symmetries, asymptotic behavior, and maximum and minimum.

| **Quadratic and Square Root Functions, Equations, and Inequalities.** The student applies mathematical processes to understand that quadratic and square root functions, equations, and quadratic inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:
- ALGII.4B Write the equation of a parabola using given attributes, including vertex, focus, directrix, axis of symmetry, and direction of opening.
- ALGII.4D Transform a quadratic function \(f(x) = ax^2 + bx + c \) to the form \(f(x) = a(x - h)^2 + k \) to identify the different attributes of \(f(x) \).

| **Number and Algebraic Methods.** The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:
- ALGII.7I Write the domain and range of a function in interval notation, inequalities and set notation.

GLOBAL GRADUATE
- - State Process Standard
- - State Readiness Standard
- - Aligned to Upcoming State Readiness Standard
- - State Supporting Standard
© Houston ISD Curriculum 2019-2020
Page 11 of 25
Cycle 3
Unit 7: Factoring and Complex Numbers
Students explore various methods of factoring polynomials and introduction of complex numbers.

<table>
<thead>
<tr>
<th>Class Periods</th>
<th>Mathematical Process Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 class periods (90-min. each) or 6 class periods (45-min. each)</td>
<td>The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:</td>
</tr>
<tr>
<td></td>
<td>☓ ALGII.1B Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.</td>
</tr>
<tr>
<td></td>
<td>☓ ALGII.1C Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.</td>
</tr>
<tr>
<td></td>
<td>☓ ALGII.1F Analyze mathematical relationships to connect and communicate mathematical idea.</td>
</tr>
</tbody>
</table>

Unit 8: Solving Quadratic Equations and Inequalities
Students analyze solutions of quadratic equations and inequalities using multiple representations.

<table>
<thead>
<tr>
<th>Class Periods</th>
<th>Mathematical Process Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 class periods (90-min. each) or 6 class periods (45-min. each)</td>
<td>The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:</td>
</tr>
<tr>
<td></td>
<td>☓ ALGII.1B Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.</td>
</tr>
<tr>
<td></td>
<td>☓ ALGII.1D Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.</td>
</tr>
<tr>
<td></td>
<td>☓ ALGII.1G Display, explain, or justify mathematical ideas and arguments using precise mathematical language in written or oral communication.</td>
</tr>
</tbody>
</table>

Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)
- The bold face words in the TEKS/SEs indicate concepts addressed specifically in this unit, the unbolded concepts are addressed in other units of this course.
- The student will:
 - ☓ ALGII.7A Add, subtract, and multiply complex numbers.
 - ☓ ALGII.7D Determine the linear factors of a polynomial function of degree three and of degree four using algebraic methods.
 - ☓ ALGII.7E Determine linear and quadratic factors of a polynomial expression of degree three and of degree four, including factoring the sum and difference of two cubes and factoring by grouping.
 - ☓ ALGII.4F Solve quadratic and square root equations.
The recommended number of class periods is less than the number of days in the grading cycle to accommodate differentiated instruction, extended learning time, and assessment days.

Complete instructional planning information and support are in the HISD Curriculum documents.

<table>
<thead>
<tr>
<th>Cycle 3</th>
<th>24 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov. 11-Dec. 19</td>
<td>24 Days</td>
</tr>
</tbody>
</table>

Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)

The bold face words in the TEKS/SEs indicate concepts addressed specifically in this unit, the unbolded concepts are addressed in other units of this course.

The student will:

1. **ALGII.4H Solve quadratic inequalities.**
Cycle 4

<table>
<thead>
<tr>
<th>Unit</th>
<th># Class Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 9: Applications of Quadratic Equations and Inequalities</td>
<td>3 class periods (90-min. each) or 6 class periods (45-min. each)</td>
</tr>
</tbody>
</table>

Unit 9: Applications of Quadratic Equations and Inequalities

Students analyze quadratic functions and connect attributes to real world situations.

Mathematical Process Standards

The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:

- ALGII.1A Apply mathematics to problems arising in everyday life, society, and the workplace.
- ALGII.1B Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
- ALGII.1E Create and use representations to organize, record, and communicate mathematical ideas.
- ALGII.1G Display, explain, or justify mathematical ideas and arguments using precise mathematical language in written or oral communication.

Quadratic and Square Root Functions, Equations, and Inequalities

The student applies mathematical processes to understand that quadratic and square root functions, equations, and quadratic inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:

- ALGII.4A Write the quadratic function given three specified points in the plane.
- ALGII.4B Write the equation of a parabola using given attributes, including vertex, focus, directrix, axis of symmetry, and direction of opening.
- ALGII.4E Formulate quadratic and square root equations using technology given a table of data.

Number and Algebraic Methods

The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:

- ALGII.7I Write the domain and range of a function in interval notation, inequalities and set notation.

Data

The student applies mathematical processes to analyze data, select appropriate models, write corresponding functions, and make predictions. The student is expected to:

- ALGII.8A Analyze data to select the appropriate model from among linear, quadratic, and exponential models.
- ALGII.8B Use regression methods available through technology to write a linear function, a quadratic function, and an exponential function from a given set of data.
- ALGII.8C Predict and make decisions and critical judgments from a given set of data using linear, quadratic, and exponential models.
Cycle 4

Mathematics – Algebra II

<table>
<thead>
<tr>
<th>Unit</th>
<th># Class Periods</th>
<th>Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 10: Systems of Linear and Quadratic Equations
Students analyze a system of equations in two variables consisting of a linear equation and a quadratic equation.</td>
<td>2 class periods (90-min. each) or 4 class periods (45-min. each)</td>
<td>Mathematical Process Standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
тол ALGII.1A Apply mathematics to problems arising in everyday life, society, and the workplace.
тол ALGII.1D Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.
тол ALGII.1F Analyze mathematical relationships to connect and communicate mathematical ideas.

Systems of Equations and Inequalities. The student applies mathematical processes to formulate systems of equations and inequalities, to use a variety of methods to solve, and to analyze reasonableness of solutions. The student is expected to:
тол ALGII.3A Formulate systems of equations, including systems consisting of three linear equations in three variables and systems consisting of two equations, the first linear and the second quadratic.
тол ALGII.3C Solve, algebraically, systems of two equations in two variables consisting of a linear equation and a quadratic equation.
тол ALGII.3D Determine the reasonableness of solutions to systems of a linear equation and a quadratic equation in two variables.</td>
</tr>
<tr>
<td>Unit 11: Radicals and Rational Exponents
Students simplify radical expressions and rational exponents and explore the relationship to laws of exponents.</td>
<td>3 class periods (90-min. each) or 6 class periods (45-min. each)</td>
<td>Mathematical Process Standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
тол ALGII.1C Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
тол ALGII.1F Analyze mathematical relationships to connect and communicate mathematical ideas.

Number and Algebraic Methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:
тол ALGII.7G Rewrite radical expressions that contain variables to equivalent forms.
тол ALGII.7H Solve equations involving rational exponents.</td>
</tr>
</tbody>
</table>
Cycle 4

<table>
<thead>
<tr>
<th>Unit 12 Root Equations and Functions</th>
<th># Class Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students explore transformations and attributes of square root and cube root functions.</td>
<td>2 class periods (90-min. each) or 4 class periods (45-min. each)</td>
</tr>
</tbody>
</table>

Mathematical Process Standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:

- **ALGII.1B** Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
- **ALGII.1C** Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
- **ALGII.1D** Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.

Attributes of Functions and Their Inverses. The student applies mathematical processes to understand that functions have distinct key attributes and to understand the relationship between a function and its inverse. The student is expected to:

- **ALGII.2A** Graph the functions, \(f(x) = \sqrt{x} \), \(f(x) = \frac{1}{x} \), \(f(x) = x^2 \), \(f(x) = \frac{2}{x} \), \(f(x) = b^x \), \(f(x) = |x| \), and \(f(x) = \log_a x \) where \(b \) is 2, 10, and \(e \) and when applicable analyze the key attributes such as domain, range, intercepts, symmetries, asymptotic behavior, and maximum and minimum.
- **ALGII.2B** Graph and write the inverse of a function using notation such as \(f^{-1}(x) \).
- **ALGII.2C** Describe and analyze the relationship between a function and its inverse (quadratic and square root, logarithmic and exponential), including the restriction(s) on domain and which will restrict its range.
- **ALGII.2D** Use the composition of two functions, including the necessary restrictions on the domain, to determine if the functions are inverses of each other.

Quadratic and Square Root Functions, Equations, and Inequalities. The student applies mathematical processes to understand that quadratic and square root functions, equations, and quadratic inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:

- **ALGII.4C** Determine the effect on the graph of \(f(x) = \sqrt{x} \) when \(f(x) \) is replaced by \(af(x) \), \(f(x) + d \), \(f(bx) \), and \(f(x - c) \) for specific positive and negative values of \(a \), \(b \), \(c \), and \(d \).
<table>
<thead>
<tr>
<th>Cycle 4</th>
<th>29 Days Jan. 6 - Feb. 14, 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td># Class Periods</td>
</tr>
<tr>
<td>Unit 13: Solving Root Equations</td>
<td>2 class periods (90-min. each) or 4 class periods (45-min. each)</td>
</tr>
</tbody>
</table>

Mathematical Process Standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:

- **ALGII.1C** Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
- **ALGII.1D** Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.

Quadratic and Square Root Functions, Equations, and Inequalities. The student applies mathematical processes to understand that quadratic and square root functions, equations, and quadratic inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:

- **ALGII.4E** Formulate quadratic and square root equations using technology given a table of data.
- **ALGII.4F** Solve quadratic and square root equations.
- **ALGII.4G** Identify extraneous solutions of square root equations.

Cubic, Cube Root, Absolute Value and Rational Functions, Equations, and Inequalities. The student applies mathematical processes to understand that cubic, cube root, rational, and absolute value functions and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:

- **ALGII.6B** Solve cube root equations that have real roots.
Cycle 4

<table>
<thead>
<tr>
<th>Unit</th>
<th># Class Periods</th>
</tr>
</thead>
</table>

| 29 Days |
| Jan. 6 - Feb. 14, 2020 |

The recommended number of class periods is less than the number of days in the grading cycle to accommodate differentiated instruction, extended learning time, and assessment days. Complete instructional planning information and support are in the HISD Curriculum documents.

Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)

The **bold face** words in the TEKS/SEs indicate concepts addressed specifically in this unit, the unbolded concepts are addressed in other units of this course.

The student will:
Cycle 5

<table>
<thead>
<tr>
<th>Unit 14: Polynomial Functions</th>
<th># Class Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students analyze attributes, transformations and applications of polynomial functions within the context of real-world situations.</td>
<td>6 class periods (90-min. each) or 12 class periods (45-min. each)</td>
</tr>
</tbody>
</table>

Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)

The **bold face** words in the TEKS/SEs indicate concepts addressed specifically in this unit, the unbolded concepts are addressed in other units of this course.

The student will:

Attributes of Functions and Their Inverses

- **(ALGII.2A)** Graph the functions, \(f(x) = \sqrt{x} \), \(f(x) = \frac{1}{x} \), \(f(x) = x^2 \), \(f(x) = \frac{1}{x} \), \(f(x)=b^x \), \(f(x) = |x| \), and \(f(x) = \log_b x \) where \(b \) is 2, 10, and \(e \) and when applicable analyze the key attributes such as domain, range, intercepts, symmetries, asymptotic behavior, and maximum and minimum.
- **(ALGII.2B)** Graph and write the inverse of a function using notation such as \(f^{-1}(x) \).

Cubic, Cube Root, Absolute Value and Rational Functions, Equations, and Inequalities

The student applies mathematical processes to understand that cubic, cube root, rational, and absolute value functions and inequalities can be used to model situations, solve problems, and make predictions. The student will be expected to:

- **(ALGII.6A)** Analyze the effect on the graphs of \(f(x) = x^3 \) and \(f(x) = \sqrt[3]{x} \) when \(f(x) \) is replaced by \(a \cdot f(x) \), \(f(bx) \), \(f(x - c) \), and \(f(x) + d \) for specific positive and negative real values of \(a, b, c, \) and \(d \).

Number and Algebraic Methods

- **(ALGII.7B)** Add, subtract, and multiply polynomials.
- **(ALGII.7C)** Determine the quotient of a polynomial of degree three and of degree four when divided by a polynomial of degree one and of degree two.
- **(ALGII.7D)** Determine the linear factors of a polynomial function of degree three and of degree four using algebraic methods.
Cycle 5

Unit

- **Unit 15:** Inverse Variation and Transformations of Rational Functions
 - **Cycle:** 29 Days
 - **Dates:** Feb. 17 - Apr. 3, 2020
 - **# Class Periods:**
 - 3 class periods (90-min. each)
 - or
 - 6 class periods (45-min. each)

Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)

The **bold face** words in the TEKS/SEs indicate concepts addressed specifically in this unit, the unbolded concepts are addressed in other units of this course.

The student will:

- **ALGII.7E** Determine linear and quadratic factors of a polynomial expression of degree three and of degree four, including factoring the sum and difference of two cubes and factoring by grouping.
- **ALGII.7I** Write the domain and range of a function in interval notation, inequalities and set notation.

Mathematical Process Standards

The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:

- **ALGII.1D** Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.
- **ALGII.1G** Display, explain, or justify mathematical ideas and arguments using precise mathematical language in written or oral communication.

Attributes of Functions and Their Inverses

The student applies mathematical processes to understand that functions have distinct key attributes and to understand the relationship between a function and its inverse. The student is expected to:

- **ALGII.2A** Graph the functions, \(f(x) = \sqrt{x} \), \(f(x) = \frac{1}{x} \), \(f(x) = x^3 \), \(f(x) = \sqrt[3]{x} \), \(f(x) = b^x \), \(f(x) = |x| \), and \(f(x) = \log_b(x) \) where \(b \) is 2, 10, and \(e \) and when applicable analyze the key attributes such as domain, range, intercepts, symmetries, asymptotic behavior, and maximum and minimum.
- **ALGII.2B** Graph and write the inverse of a function using notation such as \(f^{-1}(x) \).

Cubic, Cube Root, Absolute Value and Rational Functions, Equations, and Inequalities

The student applies mathematical processes to understand that cubic, cube root, rational, and absolute value functions and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:

- **ALGII.6G** Analyze the effect on the graphs of \(f(x) = \frac{1}{x} \), when \(f(x) \) is replaced by \(a \cdot f(x), f(bx), f(x - c) \), and \(f(x) + d \) for specific positive and negative real values of \(a, b, c, \) and \(d \).
- **ALGII.6K** Determine the asymptotic restrictions on the domain of a rational function and represent domain and range using interval notation, inequalities, and set notation.
- **ALGII.6L** Formulate and solve equations involving inverse variation.
Cycle 5
Unit 16: Rational Equations and Functions

<table>
<thead>
<tr>
<th>Unit</th>
<th># Class Periods</th>
<th>The recommended number of class periods is less than the number of days in the grading cycle to accommodate differentiated instruction, extended learning time, and assessment days. Complete instructional planning information and support are in the HISD Curriculum documents.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>29 Days</td>
<td>Feb. 17 - Apr. 3, 2020</td>
</tr>
</tbody>
</table>

Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)

The bold face words in the TEKS/SEs indicate concepts addressed specifically in this unit, the unbolded concepts are addressed in other units of this course.

The student will:

Number and Algebraic Methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:

- ALGII.7I Write the domain and range of a function in interval notation, inequalities and set notation.

Mathematical Process Standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:

- ALGII.1A Apply mathematics to problems arising in everyday life, society, and the workplace.
- ALGII.1D Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.

Attributes of Functions and Their Inverses. The student applies mathematical processes to understand that functions have distinct key attributes and to understand the relationship between a function and its inverse. The student is expected to:

- ALGII.2A Graph the functions, \(f(x) = \sqrt{x} \), \(f(x) = \frac{1}{x} \), \(f(x) = x^2 \), \(f(x) = \sqrt[x]{x} \), \(f(x) = b^x \), \(f(x) = |x| \), and \(f(x) = \log_b x \) where \(b \) is 2, 10, and \(e \) and when applicable analyze the key attributes such as domain, range, intercepts, symmetries, asymptotic behavior, and maximum and minimum.

Cubic, Cube Root, Absolute Value and Rational Functions, Equations, and Inequalities. The student applies mathematical processes to understand that cubic, cube root, rational, and absolute value functions and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:

- ALGII.6H Formulate rational equations that model real-world situations.
- ALGII.6I Solve rational equations that have real solutions.
- ALGII.6J Determine the reasonableness of a solution to a rational equation.
- ALGII.6K Determine the asymptotic restrictions on the domain of a rational function and represent domain and range using interval notation, inequalities, and set notation.

Number and Algebraic Methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:

- ALGII.7C Determine the quotient of a polynomial of degree three and of degree four when divided by a polynomial of degree one and of degree two.
Cycle 5

<table>
<thead>
<tr>
<th>Unit</th>
<th># Class Periods</th>
<th>Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>29 Days Feb. 17 - Apr. 3, 2020</td>
<td>The recommended number of class periods is less than the number of days in the grading cycle to accommodate differentiated instruction, extended learning time, and assessment days. Complete instructional planning information and support are in the HISD Curriculum documents.</td>
</tr>
</tbody>
</table>

The student will:

- **ALGII.7F** determine the sum, difference, product, and quotient of rational expressions with integral exponents of degree one and degree two.
- **ALGII.7I** Write the domain and range of a function in interval notation, inequalities and set notation.

Cycle 6

<table>
<thead>
<tr>
<th>Unit</th>
<th># Class Periods</th>
<th>Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>38 Days Apr. 6 - May 29, 2020</td>
<td>The recommended number of class periods is less than the number of days in the grading cycle to accommodate differentiated instruction, extended learning time, and assessment days. Complete instructional planning information and support are in the HISD Curriculum documents.</td>
</tr>
</tbody>
</table>

Unit 16: Rational Equations and Functions

Students analyze rational equations and functions through graphs, tables, and algebraic methods.

(continued from Cycle 5)

The student will:

- **ALGII.1A** Apply mathematics to problems arising in everyday life, society, and the workplace.
- **ALGII.1D** Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.

Mathematical Process Standards.

The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:

- **ALGII.2A** Graph the functions, \(f(x) = \sqrt{x} \), \(f(x) = \frac{1}{x} \), \(f(x) = x^3 \), \(f(x) = \sqrt[3]{x} \), \(f(x) = b^x \), \(f(x) = |x| \), and \(f(x) = \log_b{x} \) where \(b \) is 2, 10, and \(e \) and when applicable analyze the key attributes such as domain, range, intercepts, symmetries, asymptotic behavior, and maximum and minimum.

Attributes of Functions and Their Inverses.

The student applies mathematical processes to understand that functions have distinct key attributes and to understand the relationship between a function and its inverse. The student is expected to:

- **ALGII.6H** Formulate rational equations that model real-world situations.
- **ALGII.6I** Solve rational equations that have real solutions.
- **ALGII.6J** Determine the reasonableness of a solution to a rational equation.
- **ALGII.6K** Determine the asymptotic restrictions on the domain of a rational function and represent domain and range using interval notation, inequalities, and set notation.
Scope and Sequence

Mathematics – Algebra II

<table>
<thead>
<tr>
<th>Cycle 6</th>
<th>38 Days Apr. 6 - May 29, 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td># Class Periods</td>
</tr>
<tr>
<td>Number and Algebraic Methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations.</td>
<td></td>
</tr>
<tr>
<td>Tamara 7C Determine the quotient of a polynomial of degree three and of degree four when divided by a polynomial of degree one and of degree two.</td>
<td></td>
</tr>
<tr>
<td>Tamara 7F determine the sum, difference, product, and quotient of rational expressions with integral exponents of degree one and degree two.</td>
<td></td>
</tr>
<tr>
<td>Tamara 7I Write the domain and range of a function in interval notation, inequalities and set notation.</td>
<td></td>
</tr>
</tbody>
</table>

Unit 17: Exponential and Logarithmic Functions

- **Students analyze transformations and inverses and solve application problems using exponential and logarithmic functions.**
- **Mathematical Process Standards.** The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
 - **Tamara II.1A** Apply mathematics to problems arising in everyday life, society, and the workplace.
 - **Tamara II.1D** Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.
 - **Tamara II.1E** Create and use representations to organize, record, and communicate mathematical ideas.
 - **Tamara II.1F** Analyze mathematical relationships to connect and communicate mathematical ideas.

Attributes of Functions and Their Inverses. The student applies mathematical processes to understand that functions have distinct key attributes and to understand the relationship between a function and its inverse. The student is expected to:

- **Tamara II.2C** Describe and analyze the relationship between a function and its inverse (quadratic and square root, logarithmic and exponential), including the restriction(s) on domain and which will restrict its range.

Exponential and Logarithmic Functions and Equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:

- **Tamara II.5B** Formulate exponential and logarithmic equations that model real-world situations including exponential relationships written in recursive notation.
- **Tamara II.5C** Rewrite exponential equations as their corresponding logarithmic equations and logarithmic equations as their corresponding exponential equations.
Scope and Sequence

Mathematics – Algebra II

Cycle 6

<table>
<thead>
<tr>
<th>Unit</th>
<th>38 Days</th>
<th># Class Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apr. 6 - May 29, 2020</td>
<td></td>
</tr>
</tbody>
</table>

The recommended number of class periods is less than the number of days in the grading cycle to accommodate differentiated instruction, extended learning time, and assessment days. Complete instructional planning information and support are in the HISD Curriculum documents.

Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)

The bold face words in the TEKS/SEs indicate concepts addressed specifically in this unit, the unbolded concepts are addressed in other units of this course. The student will:

- **ALGII.5D** Solve exponential equations of the form \(y = a \cdot b^x \) where \(a \) is a nonzero real number and \(b \) is greater than zero and not equal to one and single logarithmic equations having real solutions.
- **ALGII.5E** Determine the reasonableness of a solution to a logarithmic equation.

Number and Algebraic Methods

The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:

- **ALGII.7I** Write the domain and range of a function in interval notation, inequalities and set notation.

Unit 18: Bridge to Precalculus Trigonometry

Students review trigonometric ratios studied in geometry. They develop the relationship between the unit circle and the definition of a periodic function and apply trigonometric functions in mathematical and real-world problems.

<table>
<thead>
<tr>
<th>3 class periods (90-min. each)</th>
<th>6 class periods (45-min. each)</th>
</tr>
</thead>
</table>

Mathematical Process Standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:

- **PC.1D** Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.
- **PC.1F** Analyze mathematical relationships to connect and communicate mathematical ideas.
- **PC.1G** Display, explain, or justify mathematical ideas and arguments using precise mathematical language in written or oral communication.

Similarity, proof, and trigonometry

The student uses the process skills in applying similarity to solve problems. The student is expected to:

- **GEOM.7B** Apply the Angle-Angle criterion to verify similar triangles and **apply the proportionality of the corresponding sides to solve problems.**

Similarity, proof, and trigonometry

The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two-column, paragraph, and flow chart. The student is expected to:

- **GEOM.9A** Determine the lengths of sides and measures of angles in a right triangle by applying the trigonometric ratios sine, cosine, and tangent to solve problems.
- **GEOM.9B** Apply the relationships in special right triangles 30°-60°-90° and 45°-45°-90° and the Pythagorean theorem, including Pythagorean triples, to solve problems.
<table>
<thead>
<tr>
<th>Cycle 6</th>
<th>38 Days</th>
<th>Apr. 6 - May 29, 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td># Class Periods</td>
<td></td>
</tr>
</tbody>
</table>

The recommended number of class periods is less than the number of days in the grading cycle to accommodate differentiated instruction, extended learning time, and assessment days. Complete instructional planning information and support are in the HISD Curriculum documents.

Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)

The **bold face** words in the TEKS/SEs indicate concepts addressed specifically in this unit, the **unbolded** concepts are addressed in other units of this course.

The student will:

Number and measure. The student uses process standards in mathematics to apply appropriate techniques, tools, and formulas to calculate measures in mathematical and real-world problems. The student is expected to:

- **PC.4A** Determine the relationship between the unit circle and the definition of a periodic function to evaluate trigonometric functions in mathematical and real-world problems.
- **PC.4B** Describe the relationship between degree and radian measure on the unit circle.
- **PC.4C** Represent angles in radians or degrees based on the concept of rotation and find the measure of reference angles and angles in standard position.
- **PC.4E** Determine the value of trigonometric ratios of angles and solve problems involving trigonometric ratios in mathematical and real-world problems.
- **PC.4F** Use trigonometry in mathematical and real-world problems, including directional bearing.