Scope and Sequence

Mathematics – Statistics

GLOBAL GRADUATE

HISD Secondary Curriculum and Development

ALIGN, ADVANCE, ENGAGE.

2019-2020 Scope and Sequence

Mathematics – Statistics

<table>
<thead>
<tr>
<th>Cycle 1</th>
<th>29 Days</th>
<th>Aug. 26 - Oct. 4, 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td># Class Periods</td>
<td>Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The student will:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Mathematical Process Standards are integrated throughout the course in all activities and lessons. Teachers should refer to these standards for instructional strategies and depth of rigor. Specific process standards have been highlighted for each unit, but these process standards should not be the only process standards associated with the daily lessons. Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.1A Apply mathematics to problems arising in everyday life, society, and the workplace;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.1B Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.1C Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.1D Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.1E Create and use representations to organize, record, and communicate mathematical ideas;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.1F Analyze mathematical relationships to connect and communicate mathematical ideas; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.1G Display, explain, or justify mathematical ideas and arguments using precise mathematical language in written or oral communication.</td>
</tr>
</tbody>
</table>
Cycle 1

<table>
<thead>
<tr>
<th>Unit</th>
<th># Class Periods</th>
<th>Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1: Categorical and Quantitative Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students identify and distinguish between</td>
<td>3.5 class</td>
<td>Statistical Process Sampling and Experimentation. The student</td>
</tr>
<tr>
<td>categorical and quantitative data.</td>
<td>periods (90-min. each)</td>
<td>applies mathematical processes to apply understandings about</td>
</tr>
<tr>
<td></td>
<td>or 7 class</td>
<td>statistical studies, surveys, and experiments to design and</td>
</tr>
<tr>
<td></td>
<td>periods (45-min. each)</td>
<td>conduct a study and use graphical, numerical, and analytical</td>
</tr>
<tr>
<td>Labor Day</td>
<td>Sept. 2</td>
<td>techniques to communicate the results of the study. The student</td>
</tr>
<tr>
<td>Early Dismissal</td>
<td>Sept. 27</td>
<td>is expected to:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• STAT.2E Formulate a meaningful question. determine the data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>needed to answer the question, gather the appropriate data,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>analyze the data, and draw reasonable conclusions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• **STAT.4A Distinguish between categorical and quantitative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• **STAT.4B Represent and summarize data and justify the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>representation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• **STAT.4C Analyze the distribution characteristics of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>quantitative data, including determine the possible existence and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>impact of outliers.</td>
</tr>
<tr>
<td>Unit 2: Data Analysis Representation</td>
<td>7 class periods</td>
<td>Statistical Process Sampling and Experimentation. The student</td>
</tr>
<tr>
<td>Students analyze relationships among data and</td>
<td>(90-min. each)</td>
<td>applies mathematical processes to apply understandings about</td>
</tr>
<tr>
<td>the associated representations.</td>
<td>or 14 class</td>
<td>statistical studies, surveys, and experiments to design and</td>
</tr>
<tr>
<td></td>
<td>periods (45-min. each)</td>
<td>conduct a study and use graphical, numerical, and analytical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>techniques to communicate the results of the study. The student</td>
</tr>
<tr>
<td></td>
<td></td>
<td>is expected to:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• STAT.2E Formulate a meaningful question. determine the data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>needed to answer the question, gather the appropriate data,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>analyze the data, and draw reasonable conclusions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• **STAT.2F Communicate methods used, analyses conducted, and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>conclusions drawn for a data-analysis project through the use of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>one or more of the following: a written report, a visual display,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>an oral report, or a multi-media presentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• **STAT.2G Critically analyze published findings for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>appropriateness of study design implemented, sampling methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>used, or the statistics applied.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• **STAT.4A Distinguish between categorical and quantitative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• **STAT.4B Represent and summarize data and justify the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>representation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• **STAT.4C Analyze the distribution characteristics of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>quantitative data, including determine the possible existence and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>impact of outliers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• **STAT.4D Compare and contrast different graphical or visual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>representations given the same data set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• **STAT.4E Compare and contrast different graphical or visual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>representations given the same data set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• **STAT.4F Analyze categorical data, including determining</td>
</tr>
<tr>
<td></td>
<td></td>
<td>marginal and conditional distributions, using two-way tables.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• **STAT.5D Compare statistical measures such as sample mean and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>standard deviation from a technology-simulated sampling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>distribution to the theoretical sampling distribution.</td>
</tr>
<tr>
<td>Unit</td>
<td># Class Periods</td>
<td>Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Unit 3: Line of Best Fit | 9.5 class periods (90-min. each) or 19 class periods (45-min. each) | **Statistical Process Sampling and Experimentation.** The student applies mathematical processes to apply understandings about statistical studies, surveys, and experiments to design and conduct a study and use graphical, numerical, and analytical techniques to communicate the results of the study. The student is expected to:
 - **STAT.2E** Formulate a meaningful question, determine the data needed to answer the question, gather the appropriate data, **analyze the data, and draw reasonable conclusions.**
 - **STAT.2F** Communicate methods used, analyses conducted, and conclusions drawn for a data-analysis project through the use of one or more of the following: a written report, a visual display, an oral report, or a multi-media presentation.
 - **STAT.3A** Distinguish between mathematical models and statistical models.
 - **STAT.3B** Construct a statistical model to describe variability around the structure of a mathematical model for a given situation.
 - **STAT.3C** Distinguish among different sources of variability, including measurement, natural, induced, and sampling variability.
 - **STAT.4B** Represent and summarize data and justify the representation.
 - **STAT.4C** Analyze the distribution characteristics of quantitative data, including determine the possible existence and impact of outliers.
 - **STAT.7A** Analyze scatterplots for patterns, linearity, outliers, and influential points.
 - **STAT.7B** Transform a linear parent function to determine a line of best fit.
 - **STAT.7C** Compare different linear models for the same set of data to determine best fit, including discussions about error.
 - **STAT.7D** Compare different methods for determining best fit, including median-median and absolute value.
 - **STAT.7E** Describe the relationship between influential points and lines of best fit using dynamic graphing technology.
 - **STAT.7F** Identify and interpret the reasonableness of attributes of lines of best fit within the context, including slope and y-intercept. |
| | Fall Holiday (students only) Oct. 9 | Early Dismissals Oct. 18 Nov. 8 |
Cycle 3

24 Days
Nov. 11-Dec. 19, 2019

The recommended number of class periods is less than the number of days in the grading cycle to accommodate differentiated instruction, extended learning time, and assessment days. Complete instructional planning information and support are in the HISD Curriculum documents.

<table>
<thead>
<tr>
<th>Unit</th>
<th># Class Periods</th>
<th>Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 4: Probability (from Tables)</td>
<td></td>
<td>Statistical Process Sampling and Experimentation. The student applies mathematical processes to apply understandings about statistical studies, surveys, and experiments to design and conduct a study and use graphical, numerical, and analytical techniques to communicate the results of the study. The student is expected to:</td>
</tr>
<tr>
<td>Students calculate probabilities based on data from tables.</td>
<td></td>
<td>- STAT.2F Communicate methods used, analyses conducted, and conclusions drawn for a data-analysis project through the use of one or more of the following: a written report, a visual display, an oral report, or a multi-media presentation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.3A Distinguish between mathematical models and statistical models.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.4D Compare and contrast different graphical or visual representations given the same data set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.4F Analyze categorical data, including determining marginal and conditional distributions, using two-way tables.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.5A Determine probabilities, including the use of a two-way table.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.5B Describe the relationship between theoretical and empirical probabilities using the Law of Large Numbers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.5C Construct a distribution based on a technology-generated simulation or collected samples for a discrete random variable.</td>
</tr>
<tr>
<td>Thanksgiving Break Nov. 25-29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teacher Prep Day Dec. 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter Break Dec. 23 - Jan. 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unit 5: Probability (from Normal Model)		**Statistical Process Sampling and Experimentation.** The student applies mathematical processes to apply understandings about statistical studies, surveys, and experiments to design and conduct a study and use graphical, numerical, and analytical techniques to communicate the results of the study. The student is expected to:
Students calculate probabilities based on data within a normal model.		- **STAT.2F** Communicate methods used, analyses conducted, and conclusions drawn for a data-analysis project through the use of one or more of the following: a written report, a visual display, an oral report, or a multi-media presentation.
		- **STAT.3A** Distinguish between mathematical models and statistical models.
		- **STAT.3D** Describe and model variability using population and sampling distributions.
		- **STAT.4D** Compare and contrast different graphical or visual representations given the same data set.
		- **STAT.4F** Analyze categorical data, including determining marginal and conditional distributions, using two-way tables.
		- **STAT.5A** Determine probabilities, including the use of a two-way table.
		- **STAT.5B** Describe the relationship between theoretical and empirical probabilities using the Law of Large Numbers.
		- **STAT.5D** Compare statistical measures such as sample mean and standard deviation from a technology-simulated sampling distribution to the theoretical sampling distribution.
Cycle 4

29 Days
Jan. 6 - Feb. 14, 2020

The recommended number of class periods is less than the number of days in the grading cycle to accommodate differentiated instruction, extended learning time, and assessment days. Complete instructional planning information and support are in the HISD Curriculum documents.

<table>
<thead>
<tr>
<th>Unit</th>
<th># Class Periods</th>
<th>Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 6: Experimental Design
Students explore experimental design based on the use of statistical modeling.</td>
<td>3.5 class periods (90-min. each) or 7 class periods (45-min. each)</td>
<td>Statistical Process Sampling and Experimentation. The student applies mathematical processes to apply understandings about statistical studies, surveys, and experiments to design and conduct a study and use graphical, numerical, and analytical techniques to communicate the results of the study. The student is expected to:
- STAT.2A Compare and contrast the benefits of different sampling techniques, including random sampling and convenience sampling methods.
- STAT.2B Distinguish among observational studies, surveys, and experiments.
- STAT.2C Analyze generalizations made from observational studies, surveys, and experiments.
- STAT.2E Formulate a meaningful question, determine the data needed to answer the question, gather the appropriate data, analyze the data, and draw reasonable conclusions.
- STAT.2F Communicate methods used, analyses conducted, and conclusions drawn for a data-analysis project through the use of one or more of the following: a written report, a visual display, an oral report, or a multi-media presentation.
- STAT.2G Critically analyze published findings for appropriateness of study design implemented, sampling methods used, or the statistics applied.
- STAT.3C Distinguish among different sources of variability, including measurement, natural, induced, and sampling variability.
- STAT.4A Distinguish between categorical and quantitative data.</td>
</tr>
<tr>
<td>MLK Jr. Day
Jan. 20</td>
<td>Early Dismissals
Jan. 18
Feb. 14</td>
<td></td>
</tr>
</tbody>
</table>

| Unit 7: Confidence Intervals (1-proportion) Students interpret and determine confidence intervals for one proportion data. | 4 class periods (90-min. each) or 8 class periods (45-min. each) | **Statistical Process Sampling and Experimentation.** The student applies mathematical processes to apply understandings about statistical studies, surveys, and experiments to design and conduct a study and use graphical, numerical, and analytical techniques to communicate the results of the study. The student is expected to:
- **STAT.2C** Analyze generalizations made from observational studies, surveys, and experiments.
- **STAT.2D** Distinguish between sample statistics and population parameters.
- **STAT.2E** Formulate a meaningful question, determine the data needed to answer the question, gather the appropriate data, analyze the data, and draw reasonable conclusions.
- **STAT.2F** Communicate methods used, analyses conducted, and conclusions drawn for a data-analysis project through the use of one or more of the following: a written report, a visual display, an oral report, or a multi-media presentation.
- **STAT.3D** Describe and model variability using population and sampling distributions.
- **STAT.4A** Distinguish between categorical and quantitative data.
- **STAT.6A** Explain how a sample statistic and a confidence level are used in the construction of a confidence interval.
- **STAT.6B** Explain how changes in the sample size, confidence level, and |
Cycle 4

<table>
<thead>
<tr>
<th>Unit</th>
<th># Class Periods</th>
<th>Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>The student will:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- standard deviation affect the margin of error of a confidence interval.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.6C Calculate a confidence interval for the mean of a normally</td>
</tr>
<tr>
<td></td>
<td></td>
<td>distributed population with a known standard deviation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.6D Calculate a confidence interval for a population proportion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.6E Interpret confidence intervals for a population parameter,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>including confidence intervals from media or statistical reports.</td>
</tr>
</tbody>
</table>

Unit 8: Confidence Intervals (2-proportion)

Students interpret and determine confidence intervals for two proportions data.

- **3 class periods** (90-min. each) or
- **6 class periods** (45-min. each)

Statistical Process Sampling and Experimentation. The student applies mathematical processes to apply understandings about statistical studies, surveys, and experiments to design and conduct a study and use graphical, numerical, and analytical techniques to communicate the results of the study. The student is expected to:

- STAT.2C Analyze generalizations made from observational studies, surveys, and experiments.
- STAT.2D Distinguish between sample statistics and population parameters.
- STAT.2E Formulate a meaningful question, determine the data needed to answer the question, gather the appropriate data, analyze the data, and draw reasonable conclusions.
- STAT.2F Communicate methods used, analyses conducted, and conclusions drawn for a data-analysis project through the use of one or more of the following: a written report, a visual display, an oral report, or a multi-media presentation.
- STAT.3D Describe and model variability using population and sampling distributions.
- STAT.4A Distinguish between categorical and quantitative data.
- STAT.6A Explain how a sample statistic and a confidence level are used in the construction of a confidence interval.
- STAT.6B Explain how changes in the sample size, confidence level, and standard deviation affect the margin of error of a confidence interval.
- STAT.6C Calculate a confidence interval for the mean of a normally distributed population with a known standard deviation.
- STAT.6D Calculate a confidence interval for a population proportion.
- STAT.6E Interpret confidence intervals for a population parameter, including confidence intervals from media or statistical reports.
- STAT.6I Interpret the results of a hypothesis test using technology-generated results such as large sample tests for proportion, mean, difference between two proportions, and difference between two independent means.
Units

Unit 9: Confidence Interval (1 Sample Mean and Difference of Mean)
Students explore confidence intervals with a sample mean and using the difference of the mean.

<table>
<thead>
<tr>
<th>Cycle 5</th>
<th>29 Days</th>
<th>The recommended number of class periods is less than the number of days in the grading cycle to accommodate differentiated instruction, extended learning time, and assessment days. Complete instructional planning information and support are in the HISD Curriculum documents. Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs) The student will:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>Feb. 17 - Apr. 3, 2020</td>
<td>Statistical Process Sampling and Experimentation. The student applies mathematical processes to apply understandings about statistical studies, surveys, and experiments to design and conduct a study and use graphical, numerical, and analytical techniques to communicate the results of the study. The student is expected to:</td>
</tr>
<tr>
<td># Class Periods</td>
<td></td>
<td>- STAT.2C Analyze generalizations made from observational studies, surveys, and experiments.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.2D Distinguish between sample statistics and population parameters.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.2E Formulate a meaningful question, determine the data needed to answer the question, gather the appropriate data, analyze the data, and draw reasonable conclusions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.2F Communicate methods used, analyses conducted, and conclusions drawn for a data-analysis project through the use of one or more of the following: a written report, a visual display, an oral report, or a multi-media presentation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.3D Describe and model variability using population and sampling distributions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.4A Distinguish between categorical and quantitative data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.6A Explain how a sample statistic and a confidence level are used in the construction of a confidence interval.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.6B Explain how changes in the sample size, confidence level, and standard deviation affect the margin of error of a confidence interval.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.6C Calculate a confidence interval for the mean of a normally distributed population with a known standard deviation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.6D Calculate a confidence interval for a population proportion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.6E Interpret confidence intervals for a population parameter, including confidence intervals from media or statistical reports.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- STAT.6I Interpret the results of a hypothesis test using technology-generated results such as large sample tests for proportion, mean, difference between two proportions, and difference between two independent means.</td>
</tr>
</tbody>
</table>

Chávez / Huerta Day Mar. 30

Spring Break Mar. 16-20
Cycle 5

29 Days
Feb. 17 - Apr. 3, 2020

The recommended number of class periods is less than the number of days in the grading cycle to accommodate differentiated instruction, extended learning time, and assessment days. Complete instructional planning information and support are in the HISD Curriculum documents.

<table>
<thead>
<tr>
<th>Unit</th>
<th># Class Periods</th>
<th>Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)</th>
</tr>
</thead>
</table>
| **Unit 10: Hypothesis Test (Proportion)**
Students interpret and conduct hypothesis testing using p-values. | 2.5 class periods (90-min. each) or 5 class periods (45-min. each) | **Statistical Process Sampling and Experimentation.** The student applies mathematical processes to apply understandings about statistical studies, surveys, and experiments to design and conduct a study and use graphical, numerical, and analytical techniques to communicate the results of the study. The student will:

- **STAT.2E** Formulate a meaningful question, determine the data needed to answer the question, gather the appropriate data, analyze the data, and draw reasonable conclusions.
- **STAT.2F** Communicate methods used, analyses conducted, and conclusions drawn for a data-analysis project through the use of one or more of the following: a written report, a visual display, an oral report, or a multi-media presentation.
- **STAT.3D** Describe and model variability using population and sampling distributions.
- **STAT.6F** Explain how a sample statistic provides evidence against a claim about a population parameter when using a hypothesis test.
- **STAT.6G** Construct null and alternative hypothesis statements about a population parameter.
- **STAT.6H** Explain the meaning of the p-value in relation to the significance level in providing evidence to reject or fail to reject the null hypothesis in the context of the situation.
- **STAT.6J** Describe the potential impact of Type I and Type II Errors.
Cycle 6

<table>
<thead>
<tr>
<th>Unit</th>
<th># Class Periods</th>
<th>Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)</th>
</tr>
</thead>
</table>
| Unit 11: Hypothesis Test (1-Proportion continued, 2-Proportion) | **5 class periods (90-min. each)** or **10 class periods (45-min. each)** | **Statistical Process Sampling and Experimentation.** The student applies mathematical processes to apply understandings about statistical studies, surveys, and experiments to design and conduct a study and use graphical, numerical, and analytical techniques to communicate the results of the study. The student is expected to:
 - **STAT.2E** Formulate a meaningful question, determine the data needed to answer the question, gather the appropriate data, analyze the data, and draw reasonable conclusions.
 - **STAT.2F** Communicate methods used, analyses conducted, and conclusions drawn for a data-analysis project through the use of one or more of the following: a written report, a visual display, an oral report, or a multi-media presentation.
 - **STAT.3D** Describe and model variability using population and sampling distributions.
 - **STAT.6F** Explain how a sample statistic provides evidence against a claim about a population parameter when using a hypothesis test.
 - **STAT.6G** Construct null and alternative hypothesis statements about a population parameter.
 - **STAT.6H** Explain the meaning of the p-value in relation to the significance level in providing evidence to reject or fail to reject the null hypothesis in the context of the situation.
 - **STAT.6I** Interpret the results of a hypothesis test using technology-generated results such as large sample tests for proportion, mean, difference between two proportions, and difference between two independent means.
 - **STAT.6J** Describe the potential impact of Type I and Type II Errors. |
Cycle 6

<table>
<thead>
<tr>
<th>Unit</th>
<th># Class Periods</th>
<th>Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)</th>
</tr>
</thead>
</table>
| **Unit 12: Hypothesis Test** *(Mean and Difference of Mean)*
Students conduct hypothesis testing using mean and the difference of mean. | 10 class periods (90-min. each) or 20 class periods (45-min. each) | **Statistical Process Sampling and Experimentation.** The student applies mathematical processes to apply understandings about statistical studies, surveys, and experiments to design and conduct a study and use graphical, numerical, and analytical techniques to communicate the results of the study. The student is expected to:
- **STAT.2E** Formulate a meaningful question, determine the data needed to answer the question, gather the appropriate data, analyze the data, and draw reasonable conclusions.
- **STAT.2F** Communicate methods used, analyses conducted, and conclusions drawn for a data-analysis project through the use of one or more of the following: a written report, a visual display, an oral report, or a multi-media presentation.
- **STAT.3D** Describe and model variability using population and sampling distributions.
- **STAT.6F** Explain how a sample statistic provides evidence against a claim about a population parameter when using a hypothesis test.
- **STAT.6G** Construct null and alternative hypothesis statements about a population parameter.
- **STAT.6H** Explain the meaning of the p-value in relation to the significance level in providing evidence to reject or fail to reject the null hypothesis in the context of the situation.
- **STAT.6I** Interpret the results of a hypothesis test using technology-generated results such as large sample tests for proportion, mean, difference between two proportions, and difference between two independent means.
- **STAT.6J** Describe the potential impact of Type I and Type II Errors.