4. Which of the following expressions gives the volume of a solid whose base in the *xy*-plane is region *Q* and whose cross sections, perpendicular to the *x*-axis, are squares with a side in the *xy*-plane?

(B)
$$\int_{1}^{\frac{\pi}{2}} \sin^2 2x \ dx$$

(C)
$$\int_{1}^{\frac{\pi}{2}} (1 - \cos 2x) dx$$

(D)
$$\int_{0}^{\frac{\pi}{2}} (1-\cos 2x^{2}) dx$$

(E)
$$\pi \int_{0}^{\frac{\pi}{2}} \sin(2x)^2 dx$$

For Question 5, region W is bounded by $f(x) = 3 + \sqrt{4 - x^2}$, $g(x) = \cos\left(\frac{\pi}{4}x\right)$, x = 0, and x = 2.

- 5. What is the area of the region W?
 - (A) 6.000
 - (B) $6 + \pi \frac{4}{\pi}$
 - (C) $6 + \pi + \frac{4}{\pi}$
 - (D) $6 + 2\pi \frac{4}{\pi}$
 - (E) $6 + 2\pi + \frac{4}{\pi}$