1. $512+730=$ \qquad
2. $55+65+75+85=$ \qquad
3. $34 \times 11=$ \qquad
4. $18+2 \times 5=$ \qquad
5. $3.14+4.13=$ \qquad (decimal)
6. $15^{2}=$
7. $(3+4)+(30+40)+(300+400)=$
8. $17 \times 8=$ \qquad
9. $48 \div 4=$ \qquad
10. $473+593+617+778=$ \qquad
11. Find the mode of $6,8,7,4,3,6,7,8$, and 7 . \qquad
12. $\frac{3}{4}-\frac{5}{16}=$ \qquad (fraction)
13. $1.2 \times 0.7=$ \qquad (decimal)
14. $1+2+3+4+\ldots+14=$ \qquad
15. $5000-3742=$ \qquad
16. $\mathrm{MMXVII}=$ \qquad (Arabic numerals)
17. $\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=$ \qquad
18. $792 \div 11=$ \qquad
19. $13 \times 15+1=$ \qquad

* 20. $403 \times 701=$

21. 450000 centimeters $=$ \qquad kilometers
22. The least common multiple of 24 and 18 is \qquad
23. $6 \frac{1}{2}+3 \frac{1}{3}=$ \qquad (mixed number)
24. $25 \times 53=$ \qquad
25. The smallest prime number greater than 80 is \qquad
26. $\frac{5}{6} \times \frac{9}{10} \times \frac{2}{3}=$ \qquad
27. If $4 x-5=19$, then $x=$ \qquad
28. $5 \frac{1}{2}$ feet $=$ \qquad inches
29. Find the reciprocal of 0.05 . \qquad

* 30. $199357 \div 503=$ \qquad

31. $5 \frac{1}{6} \times 1 \frac{1}{6}=$ \qquad (mixed number)
32. How many positive integral divisors does 40 have?
33. 90 quarters $=$ \qquad nickels
34. $43 \times 37=$ \qquad
35. A shirt normally costs $\$ 45.00$. If it is on sale by 20%, what is the new cost? \$ \qquad
36. The area of a rectangle is 32 square centimeters. If the length is 8 centimeters, what is the width? \qquad cm
37. $\frac{3}{7}+\frac{7}{3}=$ \qquad (mixed number)
38. $2.4 \times 2.6=$ \qquad (decimal)
39. $0.64=$ \qquad (fraction)
40. $22 \frac{2}{9} \% \times 723=$ \qquad
41. Find the remainder when 17^{7} is divided by 5 . \qquad
42. The circumference of a circle is 6π. Its area is $k \pi$. $k=$ \qquad
43. $43 \times 34=$ \qquad
44. $5,11,17,23, x, y, \ldots$ is an arithmetic sequence.

Find y.
45. $\sqrt{289}=$ \qquad
46. The legs of a right triangle are 8 and 15 . Find its hypotenuse.
47. If $3 x-5<x+17$, then $x<$ \qquad
48. How many distinct diagonals does a regular octagon have?
49. If $A=\{\mathrm{f}, \mathrm{a}, \mathrm{n}\}$ and $B=\{\mathrm{b}, \mathrm{l}, \mathrm{a}, \mathrm{d}, \mathrm{e}\}$, then $A \cup B$ has how many elements? \qquad

* $50.529 \times 329=$ \qquad

51. $97 \times 97=$ \qquad
52. A boat sailed 30 miles in 90 minutes. How fast (on average) was the boat traveling? \qquad mph
53. The area of a trapezoid whose bases are 4 feet and 6 feet with a height of 7 feet is \qquad square feet
54. $47($ base 10$)=$ \qquad (base 9)
55. The complement angle to 30° is \qquad degrees
56. The volume of a box whose dimensions are 6 by 5 by x is 360 . Find x. \qquad
57. $52^{2}-48^{2}=$ \qquad
58. $36 \times 0.6 \div 0.3=$ \qquad
59. If three times a number added to seven is the same as one less than four times the number, what is the number? \qquad

* $60.12^{5}=$ \qquad

61. $0.5888 \ldots=$ \qquad (fraction)
62. Find the distance from the origin to the point $(5,-12)$.
63. $1^{3}+2^{3}+3^{3}+4^{3}+\ldots+8^{3}=$ \qquad
64. $5!=$ \qquad
65. 40% of 72 is 36% of \qquad
66. A die is rolled once. Find the probability of getting a $1,3,5$, or 6 . \qquad
67. The volume of a square-based pyramid with base 5 and height 8 is \qquad
68. $\left(7^{3} \times 5+3\right) \div 11$ has a remainder of \qquad
69. The sum of the roots of $5 x^{2}-4 x+6=0$ is \qquad
70. $72 \pi^{3}=$ \qquad
71. $\frac{15^{7}}{3^{5} \times 5^{3}}=$
72. How many proper subsets does the set $\{b, o, x, e, s\}$ have?
73. The midpoint of the segment whose endpoints are $(-3,7)$ and $(9,-1)$ is (x, y). Find $x+y$. \qquad
74. $\frac{24+32+16+60}{6+8+4+15}=$ \qquad
75. The product of the GCD and LCM of 15 and 36 is
76. $21^{2}+63^{2}=$ \qquad
77. The lines $y=3 x-2$ and $y=2 x+5$ intersect at the point (x, y). Find y. \qquad
78. $101 \times 176=$ \qquad
79. $33 \frac{1}{3} \%$ of is $1 \frac{1}{2}$
80. $42857 \times 1.4=$ \qquad
